BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12418007)

  • 1. Optimization of static field homogeneity in human brain using diamagnetic passive shims.
    Wilson JL; Jenkinson M; Jezzard P
    Magn Reson Med; 2002 Nov; 48(5):906-14. PubMed ID: 12418007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI.
    Cusack R; Russell B; Cox SM; De Panfilis C; Schwarzbauer C; Ansorge R
    Neuroimage; 2005 Jan; 24(1):82-91. PubMed ID: 15588599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex.
    Wilson JL; Jezzard P
    Magn Reson Med; 2003 Nov; 50(5):1089-94. PubMed ID: 14587020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to determine the optimal intraoral passive shim for minimisation of susceptibility artifact in human inferior frontal cortex.
    Wilson JL; Jenkinson M; Jezzard P
    Neuroimage; 2003 Aug; 19(4):1802-11. PubMed ID: 12948734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast, fully automated global and local magnetic field optimization for fMRI of the human brain.
    Wilson JL; Jenkinson M; de Araujo I; Kringelbach ML; Rolls ET; Jezzard P
    Neuroimage; 2002 Oct; 17(2):967-76. PubMed ID: 12377170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and physiological consequences of passive intra-oral shimming.
    Osterbauer RA; Wilson JL; Calvert GA; Jezzard P
    Neuroimage; 2006 Jan; 29(1):245-53. PubMed ID: 16099680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local in vivo shimming using adaptive passive shim positioning.
    Yang S; Kim H; Ghim MO; Lee BU; Kim DH
    Magn Reson Imaging; 2011 Apr; 29(3):401-7. PubMed ID: 21216551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample-specific diamagnetic and paramagnetic passive shimming.
    Koch KM; Brown PB; Rothman DL; de Graaf RA
    J Magn Reson; 2006 Sep; 182(1):66-74. PubMed ID: 16814580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional brain imaging using a blood oxygenation sensitive steady state.
    Miller KL; Hargreaves BA; Lee J; Ress D; deCharms RC; Pauly JM
    Magn Reson Med; 2003 Oct; 50(4):675-83. PubMed ID: 14523951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI.
    Weiger M; Pruessmann KP; Osterbauer R; Börnert P; Boesiger P; Jezzard P
    Magn Reson Med; 2002 Nov; 48(5):860-6. PubMed ID: 12418001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T.
    Weiskopf N; Hutton C; Josephs O; Deichmann R
    Neuroimage; 2006 Nov; 33(2):493-504. PubMed ID: 16959495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance.
    Koch KM; Papademetris X; Rothman DL; de Graaf RA
    Phys Med Biol; 2006 Dec; 51(24):6381-402. PubMed ID: 17148824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents.
    Hagberg GE; Bianciardi M; Brainovich V; Cassarà AM; Maraviglia B
    Magn Reson Imaging; 2008 Sep; 26(7):1026-40. PubMed ID: 18479875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive or negative blips? The effect of phase encoding scheme on susceptibility-induced signal losses in EPI.
    De Panfilis C; Schwarzbauer C
    Neuroimage; 2005 Mar; 25(1):112-21. PubMed ID: 15734348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: parallel-acquired inhomogeneity-desensitized fMRI.
    Poser BA; Versluis MJ; Hoogduin JM; Norris DG
    Magn Reson Med; 2006 Jun; 55(6):1227-35. PubMed ID: 16680688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans.
    Iannetti GD; Niazy RK; Wise RG; Jezzard P; Brooks JC; Zambreanu L; Vennart W; Matthews PM; Tracey I
    Neuroimage; 2005 Nov; 28(3):708-19. PubMed ID: 16112589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts.
    Ojemann JG; Akbudak E; Snyder AZ; McKinstry RC; Raichle ME; Conturo TE
    Neuroimage; 1997 Oct; 6(3):156-67. PubMed ID: 9344820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps.
    Mannfolk P; Wirestam R; Nilsson M; van Westen D; Ståhlberg F; Olsrud J
    Magn Reson Imaging; 2010 Sep; 28(7):947-56. PubMed ID: 20573463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-shot dual-z-shimmed sensitivity-encoded spiral-in/out imaging for functional MRI with reduced susceptibility artifacts.
    Truong TK; Song AW
    Magn Reson Med; 2008 Jan; 59(1):221-7. PubMed ID: 18050341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI.
    Weiskopf N; Klose U; Birbaumer N; Mathiak K
    Neuroimage; 2005 Feb; 24(4):1068-79. PubMed ID: 15670684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.