BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12418091)

  • 1. Endocytosis by absorptive cells in the middle segment of the suckling rat small intestine.
    Baba R; Fujita M; Tein CE; Miyoshi M
    Anat Sci Int; 2002 Jun; 77(2):117-23. PubMed ID: 12418091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apical endocytosis of lectins by the absorptive cells of the suckling rat jejunum in vivo.
    Oshikawa T; Baba R; Fujita M
    Okajimas Folia Anat Jpn; 1996 Dec; 73(5):229-45. PubMed ID: 9059057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the origin of apical tubules in ileal absorptive cells of suckling rats using concanavalin-A as a membrane-bound tracer.
    Hatae T; Fujita M; Okuyama K
    Cell Tissue Res; 1988 Mar; 251(3):511-21. PubMed ID: 3365748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lenten cell: ultrastructure, absorptive properties, and enzyme expression of a novel type of cell in the newborn and suckling pig intestinal epithelium.
    Heath JP; Kömüves LG; Nichols BL
    Anat Rec; 1996 Jan; 244(1):95-104. PubMed ID: 8838427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence of apical and basolateral endocytic pathways at apical late endosomes in absorptive cells of suckling rat ileum in vivo.
    Fujita M; Reinhart F; Neutra M
    J Cell Sci; 1990 Oct; 97 ( Pt 2)():385-94. PubMed ID: 2277098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption of horseradish peroxidase by the small intestinal epithelium in postnatal developing rats.
    Ono K
    Z Mikrosk Anat Forsch; 1975; 89(5):870-83. PubMed ID: 1234392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice.
    CLARK SL
    J Biophys Biochem Cytol; 1959 Jan; 5(1):41-50. PubMed ID: 13630932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum.
    Gonnella PA; Neutra MR
    J Cell Biol; 1984 Sep; 99(3):909-17. PubMed ID: 6470044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular differentiation of absorptive cells in the neonatal rat colon: an electron microscopic study.
    Baba R; Tanaka R; Fujita M; Miyoshi M
    Med Electron Microsc; 1999 Sep; 32(2):105-113. PubMed ID: 11810433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and transepithelial transport of nerve growth factor in suckling rat ileum.
    Siminoski K; Gonnella P; Bernanke J; Owen L; Neutra M; Murphy RA
    J Cell Biol; 1986 Nov; 103(5):1979-90. PubMed ID: 3023393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between glucose transporter and changes in the absorptive system in small intestinal absorptive cells during the weaning process.
    Baba R; Yamami M; Sakuma Y; Fujita M; Fujimoto S
    Med Mol Morphol; 2005 Mar; 38(1):47-53. PubMed ID: 16158180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colchicine-induced tubular, vesicular and cisternal organelle aggregates in absorptive cells of the small intestine of the rat. II.--Endocytosis studies.
    Ellinger A; Pavelka M
    Biol Cell; 1986; 58(1):31-41. PubMed ID: 3032316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine.
    Wolf JL; Kauffman RS; Finberg R; Dambrauskas R; Fields BN; Trier JS
    Gastroenterology; 1983 Aug; 85(2):291-300. PubMed ID: 6305756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption of protein molecules by the small intestine of the bullfrog tadpole, Rana catesbeiana.
    Sugimoto K; Ichikawa Y; Nakamura I
    J Exp Zool; 1981 Jan; 215(1):53-62. PubMed ID: 6971913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of the apical and tubulovesicular membranes of rodent small intestinal tuft cells.
    Trier JS; Allan CH; Marcial MA; Madara JL
    Anat Rec; 1987 Sep; 219(1):69-77. PubMed ID: 3688463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane domains and macromolecular transport in intestinal epithelial cells.
    Neutra MR; Wilson JM; Weltzin RA; Kraehenbuhl JP
    Am Rev Respir Dis; 1988 Dec; 138(6 Pt 2):S10-6. PubMed ID: 3202517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of lactase-phlorizin hydrolase expression in the absorptive enterocytes of newborn rat small intestine.
    Estrada G; Krasinski SD; Montgomery RK; Grand RJ; García-Valero J; López-Tejero MD
    J Cell Physiol; 1996 May; 167(2):341-8. PubMed ID: 8613476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fine structure and localization of alkaline phosphatase activity of the small intestinal epithelium in the postnatal developing rat.
    Ono K
    Acta Histochem; 1975; 52(1):117-33. PubMed ID: 809974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis in absorptive cells of cultured human small-intestinal tissue: horseradish peroxidase, lactoperoxidase, and ferritin as markers.
    Blok J; Mulder-Stapel AA; Ginsel LA; Daems WT
    Cell Tissue Res; 1981; 216(1):1-13. PubMed ID: 7226201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular morphology of the digestive tract; macromolecules and food allergens are transferred intact across the intestinal absorptive cells during the neonatal-suckling period.
    Fujita M; Baba R; Shimamoto M; Sakuma Y; Fujimoto S
    Med Mol Morphol; 2007 Mar; 40(1):1-7. PubMed ID: 17384982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.