These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1241881)

  • 1. The distribution of annulate lamellae in eggs and zygotes of the sand dollar, Echinarachnius parma.
    Skalko RG; Thibodeau LF; Niles AM
    Acta Embryol Exp (Palermo); 1975; (2):87-99. PubMed ID: 1241881
    [No Abstract]   [Full Text] [Related]  

  • 2. Cold shock induces actin reorganization and polyspermy in sea urchin eggs.
    Santella L; Monroy A
    J Exp Zool; 1989 Nov; 252(2):183-9. PubMed ID: 2600561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin and fate of annulate lamellae in maturing sand dollar eggs.
    MERRIAM RW
    J Biophys Biochem Cytol; 1959 Jan; 5(1):117-22. PubMed ID: 13630942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on photoreactivation in gametes and zygotes of the sand dollar, Echinarachnius parma.
    COOK JS; RIECK AF
    J Cell Comp Physiol; 1962 Feb; 59():77-84. PubMed ID: 13881057
    [No Abstract]   [Full Text] [Related]  

  • 5. Understanding the effects of low salinity on fertilization success and early development in the sand dollar Echinarachnius parma.
    Allen JD; Pechenik JA
    Biol Bull; 2010 Apr; 218(2):189-99. PubMed ID: 20413795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose as a carbohydrate constituent of fertilizin from the sand-dollar, Echinarachnius parma.
    BISHOP DW; METZ CB
    Nature; 1952 Mar; 169(4300):548. PubMed ID: 14929235
    [No Abstract]   [Full Text] [Related]  

  • 7. An ultrastructural analysis of early fertilization in the sand dollar, Echinarachnius parma.
    Summers RG; Hylander BL
    Cell Tissue Res; 1974; 150(3):343-68. PubMed ID: 4367547
    [No Abstract]   [Full Text] [Related]  

  • 8. 'De novo' centrioles originate at sites associated with annulate lamellae in sea-urchin eggs.
    Kallenbach RJ
    Biosci Rep; 1982 Nov; 2(11):959-66. PubMed ID: 7159698
    [No Abstract]   [Full Text] [Related]  

  • 9. Fusion of fertilized and unfertilized sea urchin eggs. Maintenance of cell surface integrity.
    Bennett J; Mazia D
    Exp Cell Res; 1981 Aug; 134(2):494-8. PubMed ID: 7196840
    [No Abstract]   [Full Text] [Related]  

  • 10. Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs.
    Rappaport R
    J Exp Zool; 1985 Apr; 234(1):167-71. PubMed ID: 3989496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of molecules related to cholinergic signaling in eggs and zygotes of the sea urchin, Paracentrotus lividus.
    Piomboni P; Baccetti B; Moretti E; Gambera L; Angelini C; Falugi C
    J Submicrosc Cytol Pathol; 2001; 33(1-2):187-93. PubMed ID: 11686401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvilli in sea urchin eggs. Differences in their formation and type.
    Spiegel E; Spiegel M
    Exp Cell Res; 1977 Oct; 109(2):462-6. PubMed ID: 562272
    [No Abstract]   [Full Text] [Related]  

  • 13. Scanning electron microscope studies of the surface of the sea urchin egg.
    Hagström BE; Lönning S
    Protoplasma; 1976; 87(4):281-90. PubMed ID: 944461
    [No Abstract]   [Full Text] [Related]  

  • 14. The ultrastructure of surface layers isolated from fertilized and chemically stimulated sea urchin eggs.
    Kidd P; Mazia D
    J Ultrastruct Res; 1980 Jan; 70(1):58-69. PubMed ID: 7188704
    [No Abstract]   [Full Text] [Related]  

  • 15. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of two-way cortical traffic after fertilization in sea urchin eggs.
    Rebhun LI; Fisher GW
    J Cell Biol; 1984 Jul; 99(1 Pt 2):129s-131s. PubMed ID: 6430910
    [No Abstract]   [Full Text] [Related]  

  • 17. Cytoplasmic extracts from the eggs of sea urchins and clams for the study of microtubule-associated motility and bundling.
    Gliksman NR; Parsons SF; Salmon ED
    Methods Cell Biol; 1993; 39():237-51. PubMed ID: 8246801
    [No Abstract]   [Full Text] [Related]  

  • 18. Freeze-fracture electron microscopy of membrane changes in progesterone-induced maturing oocytes and eggs of Xenopus laevis.
    Bluemink JG; Hage WJ; van den Hoef MH; Dictus WJ
    Eur J Cell Biol; 1983 Jul; 31(1):85-93. PubMed ID: 6617673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of tropomyosin in sea urchin eggs.
    Ishimoda-Takagi T
    Exp Cell Res; 1979 Mar; 119(2):423-8. PubMed ID: 371970
    [No Abstract]   [Full Text] [Related]  

  • 20. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus.
    Mar H
    Dev Biol; 1980 Jul; 78(1):1-13. PubMed ID: 7399136
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.