BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12419356)

  • 21. Competition between ammonia derived from internal glutamine hydrolysis and hydroxylamine present in the solution for incorporation into UTP as catalysed by Lactococcus lactis CTP synthase.
    Willemoës M
    Arch Biochem Biophys; 2004 Apr; 424(1):105-11. PubMed ID: 15019842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ground state, intermediate, and multivalent nucleotide analogue inhibitors of cytidine 5'-triphosphate synthase.
    Taylor SD; Lunn FA; Bearne SL
    ChemMedChem; 2008 Dec; 3(12):1853-7. PubMed ID: 18988211
    [No Abstract]   [Full Text] [Related]  

  • 23. Photo-modification studies of the contacts of the 5'-terminus of growing RNA with the subunits of RNA-polymerase.
    Grachev MA; Zaychikov EF
    FEBS Lett; 1981 Jul; 130(1):23-6. PubMed ID: 7026285
    [No Abstract]   [Full Text] [Related]  

  • 24. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase.
    Iyengar A; Bearne SL
    Biochem J; 2003 Feb; 369(Pt 3):497-507. PubMed ID: 12383057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets.
    Endrizzi JA; Kim H; Anderson PM; Baldwin EP
    Biochemistry; 2004 Jun; 43(21):6447-63. PubMed ID: 15157079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic investigations of Escherichia coli cytidine-5'-triphosphate synthetase. Detection of an intermediate by positional isotope exchange experiments.
    von der Saal W; Anderson PM; Villafranca JJ
    J Biol Chem; 1985 Dec; 260(28):14993-7. PubMed ID: 2933396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method for the determination of the specific activities of UTP and CTP in mouse kidney by high-performance liquid chromatography.
    Elliger SS; Watson G
    J Chromatogr; 1989 Oct; 495():249-55. PubMed ID: 2559097
    [No Abstract]   [Full Text] [Related]  

  • 28. Purification and characterization of acyl-acyl carrier protein synthetase from oleaginous yeast and its role in triacylglycerol biosynthesis.
    Gangar A; Karande AA; Rajasekharan R
    Biochem J; 2001 Dec; 360(Pt 2):471-9. PubMed ID: 11716776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of ribonucleoside triphosphate pools in influenza A virus-infected MDCK cells.
    Stridh S
    Arch Virol; 1983; 77(2-4):223-9. PubMed ID: 6639357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of ecto-nucleoside triphosphate pyrophosphatase in human articular chondrocytes in monolayer culture.
    Caswell AM; Russell RG
    Biochim Biophys Acta; 1985 Oct; 847(1):40-7. PubMed ID: 2996615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn.
    Kusmierczyk AR; Martin J
    FEBS Lett; 2003 Jul; 547(1-3):201-4. PubMed ID: 12860414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the antitumor activity and biochemical actions of cyclopentenyl cytosine against human colon carcinoma HT-29 in vitro and in vivo.
    Gharehbaghi K; Zhen W; Fritzer-Szekeres M; Szekeres T; Jayaram HN
    Life Sci; 1999; 64(2):103-12. PubMed ID: 10069488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NTP pyrophosphohydrolase in human chondrocalcinotic and osteoarthritic cartilage. I. Some biochemical characteristics.
    Muniz O; Pelletier JP; Martel-Pelletier J; Morales S; Howell DS
    Arthritis Rheum; 1984 Feb; 27(2):186-92. PubMed ID: 6141795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of nucleoside triphosphates by use of combined reactions of hexokinase and glucose-6-phosphate dehydrogenase.
    Simofuruya H; Suzuki J
    Biochem Int; 1991 Dec; 25(6):1071-6. PubMed ID: 1810251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamine deprivation initiates reversible assembly of mammalian rods and rings.
    Calise SJ; Carcamo WC; Krueger C; Yin JD; Purich DL; Chan EK
    Cell Mol Life Sci; 2014 Aug; 71(15):2963-73. PubMed ID: 24477477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate Specificity of Na
    Yurkiv VA; Melikhov VI; Shubin VS
    Bull Exp Biol Med; 2016 Sep; 161(5):651-653. PubMed ID: 27709378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification of cytidine-triphosphate synthetase from rat liver, and demonstration of monomer, dimer and tetramer.
    Thomas PE; Lamb BJ; Chu EH
    Biochim Biophys Acta; 1988 Apr; 953(3):334-44. PubMed ID: 3355843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separation and quantitation of bacterial ribonucleoside triphosphates extracted with trifluoroacetic acid, by anion-exchange high-performance liquid chromatography.
    Dutta PK; O'Donovan GA
    J Chromatogr; 1987 Jan; 385():119-24. PubMed ID: 3104374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple mechanisms of adenosine toxicity in an adenosine sensitive mutant of baby hamster kidney (BHK) cells.
    Chan VL; Ho HJ
    Basic Life Sci; 1985; 31():103-16. PubMed ID: 3994628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.