These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12419500)

  • 1. Informational constraints in human precision aiming.
    Bootsma RJ; Boulard M; Fernandez L; Mottet D
    Neurosci Lett; 2002 Nov; 333(2):141-5. PubMed ID: 12419500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent vision and discrete manual aiming.
    Elliott D; Pollock BJ; Lyons J; Chua R
    Percept Mot Skills; 1995 Jun; 80(3 Pt 2):1203-13. PubMed ID: 7478878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task difficulty and inertial properties of hand-held tools: An assessment of their concurrent effects on precision aiming.
    Silva PL; Bootsma RJ; Figueiredo PR; Avelar BS; de Andrade AG; Fonseca ST; Mancini MC
    Hum Mov Sci; 2016 Aug; 48():161-70. PubMed ID: 27219738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the temporal limits of a visual sample for visual regulation.
    Hansen S
    J Mot Behav; 2010; 42(2):107-10. PubMed ID: 20189908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal clumsiness in children: a defect of motor programming?
    Smyth TR
    Child Care Health Dev; 1991; 17(5):283-94. PubMed ID: 1934317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic adaptation to sudden changes in visual task constraints during reciprocal aiming.
    Fernandez L; Warren WH; Bootsma RJ
    Hum Mov Sci; 2006 Dec; 25(6):695-717. PubMed ID: 16859793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context influences on the preparation and execution of reaching movements.
    Mirabella G; Pani P; Ferraina S
    Cogn Neuropsychol; 2008; 25(7-8):996-1010. PubMed ID: 19378414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between the eye and hand motor systems: disruptions due to cerebellar dysfunction.
    van Donkelaar P; Lee RG
    J Neurophysiol; 1994 Oct; 72(4):1674-85. PubMed ID: 7823094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing the use of vision in manual aiming: the role of practice.
    Elliott D; Chua R; Pollock BJ; Lyons J
    Q J Exp Psychol A; 1995 Feb; 48(1):72-83. PubMed ID: 7754087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lost in the move? Secondary task performance impairs tactile change detection on the body.
    Gallace A; Zeeden S; Röder B; Spence C
    Conscious Cogn; 2010 Mar; 19(1):215-29. PubMed ID: 19647451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-linear gaining in precision aiming: making Fitts' task a bit easier.
    Fernandez L; Bootsma RJ
    Acta Psychol (Amst); 2008 Oct; 129(2):217-27. PubMed ID: 18632086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of biomechanical and task constraints on the organization of movement in precision aiming.
    Fernandez L; Bootsma RJ
    Exp Brain Res; 2004 Dec; 159(4):458-66. PubMed ID: 15252700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of visual reafferents during a pointing movement: comparative study between open-loop and closed-loop performances in monkeys before and after unilateral electrolytic lesion of the substantia nigra.
    Viallet F; Trouche E; Beaubaton D; Legallet E
    Exp Brain Res; 1987; 65(2):399-410. PubMed ID: 3556467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic scaling of target width: dynamics, planning, and feedback.
    Buchanan JJ; Park JH; Shea CH
    Neurosci Lett; 2004 Sep; 367(3):317-22. PubMed ID: 15337257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effector-specific visual information influences kinesthesis and reaction time performance in Parkinson's disease.
    Byblow WD; Lewis GN; Stinear JW
    J Mot Behav; 2003 Jun; 35(2):99-107. PubMed ID: 12711581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Fitts's and Hooke's laws: simple harmonic movement in upper-limb cyclical aiming.
    Guiard Y
    Acta Psychol (Amst); 1993 Mar; 82(1-3):139-59. PubMed ID: 8475763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.