These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12419601)

  • 1. A Bayesian model for spatial wildlife disease prevalence data.
    Staubach C; Schmid V; Knorr-Held L; Ziller M
    Prev Vet Med; 2002 Nov; 56(1):75-87. PubMed ID: 12419601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A web-based geographic information system monitoring wildlife diseases in Abruzzo and Molise regions, Southern Italy.
    Di Lorenzo A; Zenobio V; Cioci D; Dall'Acqua F; Tora S; Iannetti S; Rulli M; Di Sabatino D
    BMC Vet Res; 2023 Oct; 19(1):183. PubMed ID: 37784124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Aujeszky's disease (pseudorabies) in European wild boars (Sus scrofa) in the federal state of Brandenburg, Germany.
    Schulze C; Hlinak A; Wohlsein P; Kutzer P; Müller T
    Berl Munch Tierarztl Wochenschr; 2010; 123(9-10):359-64. PubMed ID: 21038806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Statistical models for spatial analysis in parasitology].
    Biggeri A; Catelan D; Dreassi E; Lagazio C; Cringoli G
    Parassitologia; 2004 Jun; 46(1-2):75-8. PubMed ID: 15305691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian modelling of hunting data may improve the understanding of host-parasite systems: wild boar diseases and vaccination as an example.
    Calenge C; Rossi S
    J Theor Biol; 2014 Feb; 343():32-43. PubMed ID: 24270092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in Wisconsin.
    Osnas EE; Heisey DM; Rolley RE; Samuel MD
    Ecol Appl; 2009 Jul; 19(5):1311-22. PubMed ID: 19688937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting farm-level animal populations using environmental and socioeconomic variables.
    van Andel M; Jewell C; McKenzie J; Hollings T; Robinson A; Burgman M; Bingham P; Carpenter T
    Prev Vet Med; 2017 Sep; 145():121-132. PubMed ID: 28903868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disease mapping in veterinary epidemiology: a Bayesian geostatistical approach.
    Biggeri A; Dreassi E; Catelan D; Rinaldi L; Lagazio C; Cringoli G
    Stat Methods Med Res; 2006 Aug; 15(4):337-52. PubMed ID: 16886735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain.
    LaHue NP; Baños JV; Acevedo P; Gortázar C; Martínez-López B
    Prev Vet Med; 2016 Jun; 128():101-11. PubMed ID: 27237396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating micro area behavioural risk factor prevalence from large population-based surveys: a full Bayesian approach.
    Seliske L; Norwood TA; McLaughlin JR; Wang S; Palleschi C; Holowaty E
    BMC Public Health; 2016 Jun; 16():478. PubMed ID: 27266873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Analysis of Wildlife Tuberculosis Based on a Serologic Survey Using Dried Blood Spots, Portugal.
    Santos N; Nunes T; Fonseca C; Vieira-Pinto M; Almeida V; Gortázar C; Correia-Neves M
    Emerg Infect Dis; 2018 Dec; 24(12):2169-2175. PubMed ID: 30457522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian variable selection in modelling geographical heterogeneity in malaria transmission from sparse data: an application to Nouna Health and Demographic Surveillance System (HDSS) data, Burkina Faso.
    Diboulo E; Sié A; Diadier DA; Karagiannis Voules DA; Yé Y; Vounatsou P
    Parasit Vectors; 2015 Feb; 8():118. PubMed ID: 25888970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Bayesian modeling in dichotomous processes in the presence of nonresponse.
    Oleson JJ; He CZ
    Biometrics; 2004 Mar; 60(1):50-9. PubMed ID: 15032773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian spatial analysis of childhood diseases in Zimbabwe.
    Tsiko RG
    BMC Public Health; 2015 Sep; 15():842. PubMed ID: 26329616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian hierarchical model for the estimation of two incomplete surveillance data sets.
    Buenconsejo J; Fish D; Childs JE; Holford TR
    Stat Med; 2008 Jul; 27(17):3269-85. PubMed ID: 18314934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geographical information systems as a tool in epidemiological assessment and wildlife disease management.
    Pfeiffer DU; Hugh-Jones M
    Rev Sci Tech; 2002 Apr; 21(1):91-102. PubMed ID: 11974633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial epidemiology and GIS in marine mammal conservation medicine and disease research.
    Norman SA
    Ecohealth; 2008 Sep; 5(3):257-67. PubMed ID: 18679749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Bayes estimation of hunting success rates with spatial correlations.
    He Z; Sun D
    Biometrics; 2000 Jun; 56(2):360-7. PubMed ID: 10877290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian hierarchical modelling of noisy spatial rates on a modestly large and discontinuous irregular lattice.
    MacNab YC; Read S; Strong M; Pearson T; Maheswaran R; Goyder E
    Stat Methods Med Res; 2014 Dec; 23(6):552-71. PubMed ID: 24671659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatitis E virus antibody prevalence in hunters from a district in Central Germany, 2013: a cross-sectional study providing evidence for the benefit of protective gloves during disembowelling of wild boars.
    Schielke A; Ibrahim V; Czogiel I; Faber M; Schrader C; Dremsek P; Ulrich RG; Johne R
    BMC Infect Dis; 2015 Oct; 15():440. PubMed ID: 26493830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.