These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12419624)

  • 1. The relationship between porosity and fatigue characteristics of bone cements.
    Dunne NJ; Orr JF; Mushipe MT; Eveleigh RJ
    Biomaterials; 2003 Jan; 24(2):239-45. PubMed ID: 12419624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of mixing techniques on the physical properties of acrylic bone cement.
    Dunne NJ; Orr JF
    Biomaterials; 2001 Jul; 22(13):1819-26. PubMed ID: 11396886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mixing method and storage temperature of cement constituents on the fatigue and porosity of acrylic bone cement.
    Lewis G
    J Biomed Mater Res; 1999; 48(2):143-9. PubMed ID: 10331907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical distribution of the fatigue strength of porous bone cement.
    Hoey DA; Taylor D
    Biomaterials; 2009 Oct; 30(31):6309-17. PubMed ID: 19699519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The clinical significance of vacuum mixing bone cement.
    Geiger MH; Keating EM; Ritter MA; Ginther JA; Faris PM; Meding JB
    Clin Orthop Relat Res; 2001 Jan; (382):258-66. PubMed ID: 11153996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and comparison of three vacuum mixing systems for porosity reduction of Simplex P cement.
    Davies JP; Harris WH
    Clin Orthop Relat Res; 1990 May; (254):261-9. PubMed ID: 2323141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of mixing technique on the properties of acrylic bone-cement: a comparison of syringe and bowl mixing systems.
    Wilkinson JM; Eveleigh R; Hamer AJ; Milne A; Miles AW; Stockley I
    J Arthroplasty; 2000 Aug; 15(5):663-7. PubMed ID: 10960006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porosity of bone cement reduced by mixing and collecting under vacuum.
    Wang JS; Franzén H; Jonsson E; Lidgren L
    Acta Orthop Scand; 1993 Apr; 64(2):143-6. PubMed ID: 8498171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture and fatigue properties of acrylic bone cement: the effects of mixing method, sterilization treatment, and molecular weight.
    Graham J; Pruitt L; Ries M; Gundiah N
    J Arthroplasty; 2000 Dec; 15(8):1028-35. PubMed ID: 11112200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in bone-cement porosity by vacuum mixing, centrifugation, and hand mixing.
    Macaulay W; DiGiovanni CW; Restrepo A; Saleh KJ; Walsh H; Crossett LS; Peterson MG; Li S; Salvati EA
    J Arthroplasty; 2002 Aug; 17(5):569-75. PubMed ID: 12168171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum-mixing cement does not decrease overall porosity in cemented femoral stems: an in vitro laboratory investigation.
    Messick KJ; Miller MA; Damron LA; Race A; Clarke MT; Mann KA
    J Bone Joint Surg Br; 2007 Aug; 89(8):1115-21. PubMed ID: 17785755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life.
    James SP; Jasty M; Davies J; Piehler H; Harris WH
    J Biomed Mater Res; 1992 May; 26(5):651-62. PubMed ID: 1512284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental attempts to reduce acrylic cement porosity.
    Keller JC; Lautenschlager EP
    Biomater Med Devices Artif Organs; 1983; 11(2-3):221-36. PubMed ID: 6667326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of various vacuum mixing systems and bone cements as regards reliability, porosity and bending strength.
    Mau H; Schelling K; Heisel C; Wang JS; Breusch SJ
    Acta Orthop Scand; 2004 Apr; 75(2):160-72. PubMed ID: 15180231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative roles of cement molecular weight and mixing method on the fatigue performance of acrylic bone cement: Simplex P versus Osteopal.
    Lewis G
    J Biomed Mater Res; 2000; 53(1):119-30. PubMed ID: 10634961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there any difference between vacuum mixing systems in reducing bone cement porosity?
    Wang JS; Toksvig-Larsen S; Müller-Wille P; Franźen H
    J Biomed Mater Res; 1996; 33(2):115-9. PubMed ID: 8736030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Advanced One-Step Mixing System Under Non-Vacuum on the Mechanical Properties of Acrylic Bone Cement.
    Schommer JV; Chong AC; Erickson TD
    Iowa Orthop J; 2024; 44(1):63-68. PubMed ID: 38919359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature and vacuum mixing on bone cement properties.
    Smeds S; Goertzen D; Ivarsson I
    Clin Orthop Relat Res; 1997 Jan; (334):326-34. PubMed ID: 9005930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of two variables on the fatigue performance of acrylic bone cement: mixing method and viscosity.
    Lewis G
    Biomed Mater Eng; 1999; 9(4):197-207. PubMed ID: 10674174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.