BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12419816)

  • 1. Conformational changes in Kir2.1 channels during NH4+-induced inactivation.
    Chang HK; Shieh RC
    J Biol Chem; 2003 Jan; 278(2):908-18. PubMed ID: 12419816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes.
    Shieh RC; Lee YL
    J Physiol; 2001 Sep; 535(Pt 2):359-70. PubMed ID: 11533129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes.
    Chang HK; Yeh SH; Shieh RC
    J Physiol; 2003 Nov; 553(Pt 1):101-12. PubMed ID: 12963788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis.
    Kubo Y; Yoshimichi M; Heinemann SH
    FEBS Lett; 1998 Sep; 435(1):69-73. PubMed ID: 9755861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier.
    Garneau L; Klein H; Parent L; Sauvé R
    Biophys J; 2003 Jun; 84(6):3717-29. PubMed ID: 12770878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1.
    Bannister JP; Young BA; Main MJ; Sivaprasadarao A; Wray D
    Pflugers Arch; 1999 Nov; 438(6):868-78. PubMed ID: 10591077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation in pore domain uncovers cation- and voltage-sensitive recovery from inactivation in KAT1 channel.
    Moroni A; Gazzarrini S; Cerana R; Colombo R; Sutter JU; DiFrancesco D; Gradmann D; Thiel G
    Biophys J; 2000 Apr; 78(4):1862-71. PubMed ID: 10733966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K; Yan DH
    J Physiol; 2007 Sep; 583(Pt 3):891-908. PubMed ID: 17640933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeant ion-dependent changes in gating of Kir2.1 inward rectifier potassium channels.
    Lu T; Wu L; Xiao J; Yang J
    J Gen Physiol; 2001 Nov; 118(5):509-22. PubMed ID: 11696609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the putative pore-forming segment favor short-lived wild-type Kir2.1 pore conformations.
    Schwalbe RA; Wingo CS; Xia SL
    Biochemistry; 2002 Oct; 41(41):12457-66. PubMed ID: 12369836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP
    Ha J; Xu Y; Kawano T; Hendon T; Baki L; Garai S; Papapetropoulos A; Thakur GA; Plant LD; Logothetis DE
    J Biol Chem; 2018 Mar; 293(10):3546-3561. PubMed ID: 29317494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Physiol; 2004 Nov; 561(Pt 1):159-68. PubMed ID: 15459242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel.
    Tong Y; Brandt GS; Li M; Shapovalov G; Slimko E; Karschin A; Dougherty DA; Lester HA
    J Gen Physiol; 2001 Feb; 117(2):103-18. PubMed ID: 11158164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quaternary ammonium block of mutant Na+ channels lacking inactivation: features of a transition-intermediate mechanism.
    Kimbrough JT; Gingrich KJ
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):93-106. PubMed ID: 11080254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells.
    Bradley KK; Jaggar JH; Bonev AD; Heppner TJ; Flynn ER; Nelson MT; Horowitz B
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):639-51. PubMed ID: 10066894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3.
    Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G
    Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charges in the cytoplasmic pore control intrinsic inward rectification and single-channel properties in Kir1.1 and Kir2.1 channels.
    Chang HK; Yeh SH; Shieh RC
    J Membr Biol; 2007 Feb; 215(2-3):181-93. PubMed ID: 17568976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.