These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 12419832)

  • 1. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer.
    Sachse C; Smith G; Wilkie MJ; Barrett JH; Waxman R; Sullivan F; Forman D; Bishop DT; Wolf CR;
    Carcinogenesis; 2002 Nov; 23(11):1839-49. PubMed ID: 12419832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between exposure-relevant polymorphisms in CYP1B1, EPHX1, NQO1, GSTM1, GSTP1 and GSTT1 and risk of colorectal cancer in a Czech population.
    Hlavata I; Vrana D; Smerhovsky Z; Pardini B; Naccarati A; Vodicka P; Novotny J; Mohelnikova-Duchonova B; Soucek P
    Oncol Rep; 2010 Nov; 24(5):1347-53. PubMed ID: 20878130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphisms in xenobiotic-metabolizing genes and the risk of chronic lymphocytic leukemia and non-Hodgkin's lymphoma in adult Russian patients.
    Gra OA; Glotov AS; Nikitin EA; Glotov OS; Kuznetsova VE; Chudinov AV; Sudarikov AB; Nasedkina TV
    Am J Hematol; 2008 Apr; 83(4):279-87. PubMed ID: 18061941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candidate genetic modifiers of individual susceptibility to renal cell carcinoma: a study of polymorphic human xenobiotic-metabolizing enzymes.
    Longuemaux S; Deloménie C; Gallou C; Méjean A; Vincent-Viry M; Bouvier R; Droz D; Krishnamoorthy R; Galteau MM; Junien C; Béroud C; Dupret JM
    Cancer Res; 1999 Jun; 59(12):2903-8. PubMed ID: 10383153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility.
    Hengstler JG; Arand M; Herrero ME; Oesch F
    Recent Results Cancer Res; 1998; 154():47-85. PubMed ID: 10026993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A case-control study of microsomal epoxide hydrolase, smoking, meat consumption, glutathione S-transferase M3, and risk of colorectal adenomas.
    Cortessis V; Siegmund K; Chen Q; Zhou N; Diep A; Frankl H; Lee E; Zhu QS; Haile R; Levy D
    Cancer Res; 2001 Mar; 61(6):2381-5. PubMed ID: 11289100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of colorectal cancer.
    Kiyohara C
    J Epidemiol; 2000 Sep; 10(5):349-60. PubMed ID: 11059519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk.
    Brockmöller J; Cascorbi I; Kerb R; Roots I
    Cancer Res; 1996 Sep; 56(17):3915-25. PubMed ID: 8752158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphisms of glutathione-S-transferase and arylamine N-acetyltransferase enzymes and susceptibility to colorectal cancer.
    Kiss I; Németh A; Bogner B; Pajkos G; Orsós Z; Sándor J; Csejtey A; Faluhelyi Z; Rodler I; Ember I
    Anticancer Res; 2004; 24(6):3965-70. PubMed ID: 15736440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk.
    Northwood EL; Elliott F; Forman D; Barrett JH; Wilkie MJ; Carey FA; Steele RJ; Wolf R; Bishop T; Smith G
    Pharmacogenet Genomics; 2010 May; 20(5):315-26. PubMed ID: 20375710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes.
    Thier R; Brüning T; Roos PH; Rihs HP; Golka K; Ko Y; Bolt HM
    Int J Hyg Environ Health; 2003 Jun; 206(3):149-71. PubMed ID: 12872524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk.
    Cleary SP; Cotterchio M; Shi E; Gallinger S; Harper P
    Am J Epidemiol; 2010 Nov; 172(9):1000-14. PubMed ID: 20937634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer and smoking.
    Yoshida K; Osawa K; Kasahara M; Miyaishi A; Nakanishi K; Hayamizu S; Osawa Y; Tsutou A; Tabuchi Y; Shimada E; Tanaka K; Yamamoto M; Takahashi J
    Asian Pac J Cancer Prev; 2007; 8(3):438-44. PubMed ID: 18159984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CYP1A1, GSTM1, GSTT1 and NQO1 polymorphisms and colorectal adenomas in Japanese men.
    Hamachi T; Tajima O; Uezono K; Tabata S; Abe H; Ohnaka K; Kono S
    World J Gastroenterol; 2013 Jul; 19(25):4023-30. PubMed ID: 23840148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between allelic polymorphisms of metabolizing enzymes (CYP 1A1, CYP 1A2, CYP 2E1, mEH) and occurrence of colorectal cancer in Hungary.
    Kiss I; Orsós Z; Gombos K; Bogner B; Csejtei A; Tibold A; Varga Z; Pázsit E; Magda I; Zölyomi A; Ember I
    Anticancer Res; 2007; 27(4C):2931-7. PubMed ID: 17695473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of total meat intake and exposure to individual heterocyclic amines in a case-control study of colorectal cancer: contribution of metabolic variation to risk.
    Nowell S; Coles B; Sinha R; MacLeod S; Luke Ratnasinghe D; Stotts C; Kadlubar FF; Ambrosone CB; Lang NP
    Mutat Res; 2002 Sep; 506-507():175-85. PubMed ID: 12351157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes.
    Kiss I; Sándor J; Pajkos G; Bogner B; Hegedüs G; Ember I
    Anticancer Res; 2000; 20(1B):519-22. PubMed ID: 10769717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of GSTM1, GSTT1, GSTP1, NAT1, NAT2, EPHX1, MTR and MTHFR polymorphism on chromosomal aberration frequencies in human lymphocytes.
    Skjelbred CF; Svendsen M; Haugan V; Eek AK; Clausen KO; Kure EH; Tuimala JT; Svendsen MV; Norppa H; Hansteen IL
    Carcinogenesis; 2011 Mar; 32(3):399-405. PubMed ID: 21097530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians.
    Gra O; Mityaeva O; Berdichevets I; Kozhekbaeva Z; Fesenko D; Kurbatova O; Goldenkova-Pavlova I; Nasedkina T
    Genet Test Mol Biomarkers; 2010 Jun; 14(3):329-42. PubMed ID: 20373852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic genetic polymorphisms and susceptibility to lung cancer.
    Bouchardy C; Benhamou S; Jourenkova N; Dayer P; Hirvonen A
    Lung Cancer; 2001 May; 32(2):109-12. PubMed ID: 11325480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.