BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 12419832)

  • 81. Genetic polymorphism of conjugating enzymes and cancer risk: GSTM1, GSTT1, NAT1 and NAT2.
    Lee E; Huang Y; Zhao B; Seow-Choen F; Balakrishnan A; Chan SH
    J Toxicol Sci; 1998 Jul; 23 Suppl 2():140-2. PubMed ID: 9760451
    [No Abstract]   [Full Text] [Related]  

  • 82. [A study on the inherited susceptibility of chromosomal damage in peripheral blood lymphocytes among coke oven workers].
    Leng SG; Zheng YX; Pan ZF; Niu Y; Dai YF; Wang YW; Zhang WZ; Xiao J; Wang ZX; Li T; He FS
    Zhonghua Yu Fang Yi Xue Za Zhi; 2004 Mar; 38(2):94-8. PubMed ID: 15061915
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Polymorphisms in xenobiotic conjugation and disease predisposition.
    Brockmöller J; Cascorbi I; Kerb R; Sachse C; Roots I
    Toxicol Lett; 1998 Dec; 102-103():173-83. PubMed ID: 10022251
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Genetic polymorphisms of NAD(P)H quinone oxidoreductase, CYP1A1 and microsomal epoxide hydrolase and lung cancer risk in Nanjing, China.
    Yin L; Pu Y; Liu TY; Tung YH; Chen KW; Lin P
    Lung Cancer; 2001; 33(2-3):133-41. PubMed ID: 11551408
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Do single nucleotide polymorphisms in xenobiotic metabolizing genes determine breast cancer susceptibility and treatment outcomes?
    Singh V; Parmar D; Singh MP
    Cancer Invest; 2008 Oct; 26(8):769-83. PubMed ID: 18798070
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Toxicokinetic genetics: an approach to gene-environment and gene-gene interactions in complex metabolic pathways.
    Cortessis V; Thomas DC
    IARC Sci Publ; 2004; (157):127-50. PubMed ID: 15055294
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Genetic polymorphisms in xenobiotic metabolizing enzymes as a determinant of susceptibility to environmental mutagens and carcinogens in humans].
    Ozawa S
    Yakugaku Zasshi; 1997 Nov; 117(10-11):895-909. PubMed ID: 9414599
    [TBL] [Abstract][Full Text] [Related]  

  • 88. N-Acetyltransferases, sulfotransferases and heterocyclic amine activation in the breast.
    Williams JA; Stone EM; Fakis G; Johnson N; Cordell JA; Meinl W; Glatt H; Sim E; Phillips DH
    Pharmacogenetics; 2001 Jul; 11(5):373-88. PubMed ID: 11470991
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study.
    Tiemersma EW; Kampman E; Bueno de Mesquita HB; Bunschoten A; van Schothorst EM; Kok FJ; Kromhout D
    Cancer Causes Control; 2002 May; 13(4):383-93. PubMed ID: 12074508
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Well-done red meat, metabolic phenotypes and colorectal cancer in Hawaii.
    Le Marchand L; Hankin JH; Pierce LM; Sinha R; Nerurkar PV; Franke AA; Wilkens LR; Kolonel LN; Donlon T; Seifried A; Custer LJ; Lum-Jones A; Chang W
    Mutat Res; 2002 Sep; 506-507():205-14. PubMed ID: 12351160
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Meat, metabolic genotypes and risk for colorectal cancer.
    Roberts-Thomson IC; Butler WJ; Ryan P
    Eur J Cancer Prev; 1999 Jul; 8(3):207-11. PubMed ID: 10443949
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Frequency of mutant CYP1A1, NAT2 and GSTM1 alleles in normal Indians and Malays.
    Zhao B; Lee EJ; Wong JY; Yeoh PN; Gong NH
    Pharmacogenetics; 1995 Oct; 5(5):275-80. PubMed ID: 8563767
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Novel markers of susceptibility to carcinogens in diet: associations with colorectal cancer.
    Sweeney C; Coles BF; Nowell S; Lang NP; Kadlubar FF
    Toxicology; 2002 Dec; 181-182():83-7. PubMed ID: 12505289
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Associations between family history of cancer and genes coding for metabolizing enzymes (United States).
    Slattery ML; Edwards SL; Samowitz W; Potter J
    Cancer Causes Control; 2000 Oct; 11(9):799-803. PubMed ID: 11075868
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metabolic genotypes and risk for colorectal cancer.
    Butler WJ; Ryan P; Roberts-Thomson IC
    J Gastroenterol Hepatol; 2001 Jun; 16(6):631-5. PubMed ID: 11422615
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Polymorphisms of xenobiotic metabolizing genes in oropharyngeal carcinoma.
    Amador AG; Righi PD; Radpour S; Everett ET; Weisberger E; Langer M; Eckert GJ; Christen AG; Campbell S; Summerlin DJ; Reynolds N; Hartsfield JK
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2002 Apr; 93(4):440-5. PubMed ID: 12029283
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Genetic polymorphisms of biotransformation enzymes in patients with Hodgkin's and non-Hodgkin's lymphomas.
    Sarmanová J; Benesová K; Gut I; Nedelcheva-Kristensen V; Tynková L; Soucek P
    Hum Mol Genet; 2001 Jun; 10(12):1265-73. PubMed ID: 11406608
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response.
    Autrup H
    Mutat Res; 2000 Jan; 464(1):65-76. PubMed ID: 10633178
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The CYP1A1 genotype may alter the association of meat consumption patterns and preparation with the risk of colorectal cancer in men and women.
    Murtaugh MA; Sweeney C; Ma KN; Caan BJ; Slattery ML
    J Nutr; 2005 Feb; 135(2):179-86. PubMed ID: 15671210
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer.
    Yuan JM; Chan KK; Coetzee GA; Castelao JE; Watson MA; Bell DA; Wang R; Yu MC
    Carcinogenesis; 2008 Jul; 29(7):1386-93. PubMed ID: 18544563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.