BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12420757)

  • 1. Sensitive detection of organophosphorus pesticides using a needle type amperometric acetylcholinesterase-based bioelectrode. Thiocholine electrochemistry and immobilised enzyme inhibition.
    Turdean GL; Popescu IC; Oniciu L; Thevenot DR
    J Enzyme Inhib Med Chem; 2002 Apr; 17(2):107-15. PubMed ID: 12420757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development.
    Talarico D; Arduini F; Amine A; Cacciotti I; Moscone D; Palleschi G
    Anal Bioanal Chem; 2016 Oct; 408(26):7299-309. PubMed ID: 27251198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nano-silver enzyme electrode for organophosphorus pesticide detection.
    Zheng Q; Yu Y; Fan K; Ji F; Wu J; Ying Y
    Anal Bioanal Chem; 2016 Aug; 408(21):5819-5827. PubMed ID: 27342792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine esterase enzyme doped multiwalled carbon nanotubes for the detection of organophosphorus pesticide using cyclic voltammetry.
    Thakkar JB; Gupta S; Prabha CR
    Int J Biol Macromol; 2019 Sep; 137():895-903. PubMed ID: 31247229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a thiol-specific electrocatalytic electrode for real-time amperometric monitoring of enzymatic hydrolysis.
    Mukherjee J; Lumibao CY; Kirchhoff JR
    Analyst; 2009 Mar; 134(3):582-6. PubMed ID: 19238297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an acetylcholinesterase immobilized flow through amperometric detector based on thiocholine detection at a silver electrode.
    Parsajoo C; Kauffmann JM
    Talanta; 2013 May; 109():116-20. PubMed ID: 23618147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-injection amperometric determination of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin.
    Jeanty G; Wojciechowska A; Marty JL; Trojanowicz M
    Anal Bioanal Chem; 2002 Apr; 373(8):691-5. PubMed ID: 12194025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode.
    Panraksa Y; Siangproh W; Khampieng T; Chailapakul O; Apilux A
    Talanta; 2018 Feb; 178():1017-1023. PubMed ID: 29136790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow analysis for determination of paraoxon with use of immobilized acetylcholinesterase reactor and new type of chemiluminescent reaction.
    Danet AF; Badea M; Marty JL; Aboul-Enein HY
    Biopolymers; 2000; 57(1):37-42. PubMed ID: 10679638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide.
    Lang Q; Han L; Hou C; Wang F; Liu A
    Talanta; 2016 Aug; 156-157():34-41. PubMed ID: 27260432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin.
    Valdés-Ramírez G; Fournier D; Ramírez-Silva MT; Marty JL
    Talanta; 2008 Jan; 74(4):741-6. PubMed ID: 18371703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos.
    Di Tuoro D; Portaccio M; Lepore M; Arduini F; Moscone D; Bencivenga U; Mita DG
    N Biotechnol; 2011 Dec; 29(1):132-8. PubMed ID: 21600321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents.
    Liu G; Lin Y
    Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads.
    Llopis X; Pumera M; Alegret S; Merkoçi A
    Lab Chip; 2009 Jan; 9(2):213-8. PubMed ID: 19107276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides.
    Wei Y; Li Y; Qu Y; Xiao F; Shi G; Jin L
    Anal Chim Acta; 2009 Jun; 643(1-2):13-8. PubMed ID: 19446058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characterization of Lucilia cuprina acetylcholinesterase as a drug target, and the identification of novel inhibitors by high throughput screening.
    Ilg T; Cramer J; Lutz J; Noack S; Schmitt H; Williams H; Newton T
    Insect Biochem Mol Biol; 2011 Jul; 41(7):470-83. PubMed ID: 21530657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide.
    Tang W; Yang J; Wang F; Wang J; Li Z
    Anal Chim Acta; 2019 Jul; 1060():97-102. PubMed ID: 30902336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode.
    Dutta RR; Puzari P
    Biosens Bioelectron; 2014 Feb; 52():166-72. PubMed ID: 24041663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of organophosphate pesticide using polyaniline and carbon nanotubes composite based on acetylcholinesterase inhibition.
    Chen D; Chen C; Du D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5662-6. PubMed ID: 21133088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.