BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12421001)

  • 1. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil.
    Aleem A; Isar J; Malik A
    Bioresour Technol; 2003 Jan; 86(1):7-13. PubMed ID: 12421001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D; Itana F; Olsson M
    Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro effects of various xenobiotics on Azotobacter chroococcum strains isolated from soils of southern Poland.
    Lenart AM
    J Environ Sci Health B; 2012; 47(1):7-12. PubMed ID: 22022783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil.
    Alam MZ; Ahmad S; Malik A
    Environ Monit Assess; 2011 Jul; 178(1-4):281-91. PubMed ID: 20824329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals.
    Rehman A; Shakoori FR; Shakoori AR
    Bioresour Technol; 2008 Jun; 99(9):3890-5. PubMed ID: 17888657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Ecotoxicology; 2019 Apr; 28(3):302-322. PubMed ID: 30758729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater.
    Malik A; Aleem A
    Environ Monit Assess; 2011 Jul; 178(1-4):293-308. PubMed ID: 20853188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum.
    Rizvi A; Khan MS
    Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].
    Lazăr V; Cernat R; Balotescu C; Cotar A; Coipan E; Cojocaru C
    Bacteriol Virusol Parazitol Epidemiol; 2002; 47(3-4):155-60. PubMed ID: 15085605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater.
    Shakoori AR; Muneer B
    Folia Microbiol (Praha); 2002; 47(1):43-50. PubMed ID: 11980269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of multiple antibiotic resistance in Azotobacter chroococcum.
    Sindhu SS; Grover V; Narula N; Lakshminarayana K
    Zentralbl Mikrobiol; 1989; 144(2):97-101. PubMed ID: 2750350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment.
    Zhou S; Wei C; Liao C; Wu H
    J Environ Sci (China); 2008; 20(12):1514-8. PubMed ID: 19209641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of drain water receiving effluent from tanneries and its impact on soil and plants with particular emphasis on bioaccumulation of heavy metals.
    Sahu RK; Katiyar S; Tiwari J; Kisku GC
    J Environ Biol; 2007 Jul; 28(3):685-90. PubMed ID: 18380096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses.
    Safari Sinegani AA; Younessi N
    J Glob Antimicrob Resist; 2017 Sep; 10():247-255. PubMed ID: 28732786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India.
    Tiwari KK; Singh NK; Patel MP; Tiwari MR; Rai UN
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1670-7. PubMed ID: 21555153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir).
    Jan FA; Ishaq M; Khan S; Ihsanullah I; Ahmad I; Shakirullah M
    J Hazard Mater; 2010 Jul; 179(1-3):612-21. PubMed ID: 20399016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.
    Kumar Sharma R; Agrawal M; Marshall F
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium-resistant soil actinomycetes: their tolerance to other metals and antibiotics.
    Basu M; Paul AK
    Acta Microbiol Immunol Hung; 1999; 46(1):25-32. PubMed ID: 10331065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt.
    Abskharon RN; Hassan SH; Gad El-Rab SM; Shoreit AA
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):309-15. PubMed ID: 18584108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.