These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12421085)

  • 1. Acetaldehyde and ethanol are responsible for mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) in flor yeasts.
    Castrejón F; Codón AC; Cubero B; Benítez T
    Syst Appl Microbiol; 2002 Oct; 25(3):462-7. PubMed ID: 12421085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations.
    Martínez P; Codón AC; Pérez L; Benítez T
    Yeast; 1995 Nov; 11(14):1399-411. PubMed ID: 8585323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indigenous yeast population from Georgian aged wines produced by traditional "Kakhetian" method.
    Capece A; Siesto G; Poeta C; Pietrafesa R; Romano P
    Food Microbiol; 2013 Dec; 36(2):447-55. PubMed ID: 24010628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts.
    Ibeas JI; Jimenez J
    Appl Environ Microbiol; 1997 Jan; 63(1):7-12. PubMed ID: 8979333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines.
    Aranda A; Querol A; del Olmo Ml
    Arch Microbiol; 2002 Apr; 177(4):304-12. PubMed ID: 11889484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
    Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. region.
    Marin-Menguiano M; Romero-Sanchez S; Barrales RR; Ibeas JI
    Int J Food Microbiol; 2017 Mar; 244():67-73. PubMed ID: 28068590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
    Alexandre H
    Int J Food Microbiol; 2013 Oct; 167(2):269-75. PubMed ID: 24141073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic stability of Saccharomyces cerevisiae baker's yeasts.
    Gasent-Ramírez JM; Castrejón F; Querol A; Ramón D; Benítez T
    Syst Appl Microbiol; 1999 Sep; 22(3):329-40. PubMed ID: 10553285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast population dynamics during the fermentation and biological aging of sherry wines.
    Esteve-Zarzoso B; Peris-Torán MJ; García-Maiquez E; Uruburu F; Querol A
    Appl Environ Microbiol; 2001 May; 67(5):2056-61. PubMed ID: 11319081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A; del Olmo Ml Ml
    Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. French Jura flor yeasts: genotype and technological diversity.
    Charpentier C; Colin A; Alais A; Legras JL
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):263-73. PubMed ID: 19221890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.
    Fierro-Risco J; Rincón AM; Benítez T; Codón AC
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6867-81. PubMed ID: 23553032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined use of killer biotype and mtDNA-RFLP patterns in a Patagonian wine Saccharomyces cerevisiae diversity study.
    Lopes CA; Lavalle TL; Querol A; Caballero AC
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):147-56. PubMed ID: 16328858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation.
    Kovács M; Stuparevic I; Mrsa V; Maráz A
    FEMS Yeast Res; 2008 Nov; 8(7):1115-26. PubMed ID: 18657192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flor yeast immobilization in microbial biocapsules for Sherry wine production: microvinification approach.
    Pastor-Vega N; Carbonero-Pacheco J; Mauricio JC; Moreno J; García-Martínez T; Nitin N; Ogawa M; Rai R; Moreno-García J
    World J Microbiol Biotechnol; 2023 Aug; 39(10):271. PubMed ID: 37541980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts.
    Fernádez-Espinar MT; Esteve-Zarzoso B; Querol A; Barrio E
    Antonie Van Leeuwenhoek; 2000 Jul; 78(1):87-97. PubMed ID: 11016699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of browning compounds by yeasts involved in the winemaking of sherry type wines.
    Merida J; Lopez-Toledano A; Marquez T; Millan C; Ortega JM; Medina M
    Biotechnol Lett; 2005 Oct; 27(20):1565-70. PubMed ID: 16245175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of blending on the content of different compounds in the biological aging of sherry dry wines.
    Berlanga TM; Peinado R; Millán C; Mauricio JC; Ortega JM
    J Agric Food Chem; 2004 May; 52(9):2577-81. PubMed ID: 15113160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lysozyme on "flor" velum yeasts in the biological aging of sherry wines.
    Roldán A; Lasanta C; Caro I; Palacios V
    Food Microbiol; 2012 May; 30(1):245-52. PubMed ID: 22265308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.