These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12421127)

  • 21. Diagnostic potential of laser-induced autofluorescence emission in brain tissue.
    Chung YG; Schwartz JA; Gardner CM; Sawaya RE; Jacques SL
    J Korean Med Sci; 1997 Apr; 12(2):135-42. PubMed ID: 9170019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autofluorescence spectroscopy and imaging of Platymonas subcordiformis irradiated by diode laser based on LSCM.
    Huang Z; Chen R; Li Y; Zhuang H; Chen J; Wang L
    Scanning; 2008; 30(6):443-7. PubMed ID: 18752217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Online autofluorescence measurements during selective RPE laser treatment.
    Framme C; Schüle G; Roider J; Birngruber R; Brinkmann R
    Graefes Arch Clin Exp Ophthalmol; 2004 Oct; 242(10):863-9. PubMed ID: 15221301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized autofluorescence bronchoscopy using additional backscattered red light.
    Gabrecht T; Glanzmann T; Freitag L; Weber BC; van den Bergh H; Wagnières G
    J Biomed Opt; 2007; 12(6):064016. PubMed ID: 18163832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autofluorescence spectroscopic differentiation between normal and cancerous colorectal tissues by means of a two-peak ratio algorithm.
    Wang CY; Lin JK; Chen BF; Chiang HK
    J Formos Med Assoc; 1999 Dec; 98(12):837-43. PubMed ID: 10634024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic and microscopic characteristics of human skin autofluorescence emission.
    Zeng H; MacAulay C; McLean DI; Palcic B
    Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling.
    Shao X; Zheng W; Huang Z
    J Biomed Opt; 2011 Jun; 16(6):067005. PubMed ID: 21721826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimizing urine autofluorescence under multi-photon excitation conditions.
    Bukowski EJ; Bright FV
    Appl Spectrosc; 2004 Sep; 58(9):1101-5. PubMed ID: 15479527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic characterization of oral epithelial dysplasia and squamous cell carcinoma using multiphoton autofluorescence micro-spectroscopy.
    Pal R; Edward K; Ma L; Qiu S; Vargas G
    Lasers Surg Med; 2017 Nov; 49(9):866-873. PubMed ID: 28677822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues.
    Huang Z; McWilliams A; Lam S; English J; McLean DI; Lui H; Zeng H
    Int J Oncol; 2003 Sep; 23(3):649-55. PubMed ID: 12888900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo autofluorescence imaging of early cancers in the human tracheobronchial tree with a spectrally optimized system.
    Goujon D; Zellweger M; Radu A; Grosjean P; Weber BC; van den Bergh H; Monnier P; Wagnières G
    J Biomed Opt; 2003 Jan; 8(1):17-25. PubMed ID: 12542375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo fluorescence of human skin. A potential marker of photoaging.
    Leffell DJ; Stetz ML; Milstone LM; Deckelbaum LI
    Arch Dermatol; 1988 Oct; 124(10):1514-8. PubMed ID: 3421727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristic autofluorescence for cancer diagnosis and its origin.
    Yang YL; Ye YM; Li FM; Li YF; Ma PZ
    Lasers Surg Med; 1987; 7(6):528-32. PubMed ID: 3431331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of laser-induced autofluorescence spectroscopy in bladder tumor detection. Dependence on the excitation wavelength.
    Anidjar M; Cussenot O; Avrillier S; Ettori D; Teillac P; Le Duc A
    Ann N Y Acad Sci; 1998 Feb; 838():130-42. PubMed ID: 9511802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength.
    Anidjar M; Ettori D; Cussenot O; Meria P; Desgrandchamps F; Cortesse A; Teillac P; Le Duc A; Avrillier S
    J Urol; 1996 Nov; 156(5):1590-6. PubMed ID: 8863545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques.
    Chwirot BW; Chwirot S; Jedrzejczyk W; Jackowski M; Raczyńska AM; Winczakiewicz J; Dobber J
    Lasers Surg Med; 1997; 21(2):149-58. PubMed ID: 9261792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autofluorescence spectroscopy of epithelial tissues.
    Wu Y; Qu JY
    J Biomed Opt; 2006; 11(5):054023. PubMed ID: 17092172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode.
    Schneckenburger H; Wagner M; Weber P; Strauss WS; Sailer R
    J Fluoresc; 2004 Sep; 14(5):649-54. PubMed ID: 15617271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm.
    Wang C; Pan YL; James D; Wetmore AE; Redding B
    Anal Chim Acta; 2014 Apr; 820():119-32. PubMed ID: 24745745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.