These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12421535)

  • 21. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line.
    Lansdell KA; Cai Z; Kidd JF; Sheppard DN
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):317-30. PubMed ID: 10766914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model.
    Horisberger JD
    Pflugers Arch; 2003 Jan; 445(4):522-8. PubMed ID: 12548399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of mitochondria-rich cells in epithelial chloride uptake.
    Larsen EH; Christoffersen BC; Jensen LJ; Sørensen JB; Willumsen NJ
    Exp Physiol; 1996 May; 81(3):525-34. PubMed ID: 8737085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors.
    Li H; Findlay IA; Sheppard DN
    Kidney Int; 2004 Nov; 66(5):1926-38. PubMed ID: 15496164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternate stimulation of apical CFTR by genistein in epithelia.
    Illek B; Fischer H; Machen TE
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C265-75. PubMed ID: 8772453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake.
    Larsen EH
    Acta Physiol (Oxf); 2011 Jul; 202(3):435-64. PubMed ID: 21288306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polarized expression of cAMP-activated chloride channels in isolated epithelial cells.
    Torres RJ; Altenberg GA; Cohn JA; Reuss L
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1574-82. PubMed ID: 8944641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The route of passive chloride movement across amphibian skin: localization and regulatory mechanisms.
    Nagel W; Somieski P; Katz U
    Biochim Biophys Acta; 2002 Nov; 1566(1-2):44-54. PubMed ID: 12421536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chloride channels in toad skin.
    Larsen EH; Rasmussen BE
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):413-34. PubMed ID: 6130539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conductance-voltage relations in large-conductance chloride channels in proliferating L6 myoblasts.
    Hurnák O; Zachar J
    Gen Physiol Biophys; 1994 Jun; 13(3):171-92. PubMed ID: 7835680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts.
    Reddy MM; Wang XF; Quinton PM
    J Membr Biol; 2008; 225(1-3):1-11. PubMed ID: 18937003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CFTR-like chloride channels in non-ciliated bronchiolar epithelial (Clara) cells.
    Chinet TC; Gabriel SE; Penland CM; Sato M; Stutts MJ; Boucher RC; Van Scott MR
    Biochem Biophys Res Commun; 1997 Jan; 230(2):470-5. PubMed ID: 9016805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transepithelial fluctuation analysis of chloride secretion.
    Singh AK; Schultz BD; van Driessche W; Bridges RJ
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():127-32. PubMed ID: 15463944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that two distinct crypt cell types secrete chloride and potassium in human colon.
    Linley J; Loganathan A; Kopanati S; Sandle GI; Hunter M
    Gut; 2014 Mar; 63(3):472-9. PubMed ID: 23740188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cAMP-activated apical membrane chloride channels in Necturus gallbladder epithelium. Conductance, selectivity, and block.
    Copello J; Heming TA; Segal Y; Reuss L
    J Gen Physiol; 1993 Aug; 102(2):177-99. PubMed ID: 8228907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of cystic fibrosis transmembrane conductance regulator in human gallbladder epithelial cells.
    Dray-Charier N; Paul A; Veissiere D; Mergey M; Scoazec JY; Capeau J; Brahimi-Horn C; Housset C
    Lab Invest; 1995 Dec; 73(6):828-36. PubMed ID: 8558844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating CFTR and KCa3.1 Protein/Protein Interactions.
    Klein H; Abu-Arish A; Trinh NT; Luo Y; Wiseman PW; Hanrahan JW; Brochiero E; Sauvé R
    PLoS One; 2016; 11(4):e0153665. PubMed ID: 27092946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. cAMP stimulates CFTR-like Cl- channels and inhibits amiloride-sensitive Na+ channels in mouse CCD cells.
    Letz B; Korbmacher C
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C657-66. PubMed ID: 9124310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 4-Chloro-benzo[F]isoquinoline (CBIQ) activates CFTR chloride channels and KCNN4 potassium channels in Calu-3 human airway epithelial cells.
    Szkotak AJ; Murthy M; MacVinish LJ; Duszyk M; Cuthbert AW
    Br J Pharmacol; 2004 Jun; 142(3):531-42. PubMed ID: 15148241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.