BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12421972)

  • 1. Characterization of nitric oxide consumption pathways by normal, chronic granulomatous disease and myeloperoxidase-deficient human neutrophils.
    Clark SR; Coffey MJ; Maclean RM; Collins PW; Lewis MJ; Cross AR; O'Donnell VB
    J Immunol; 2002 Nov; 169(10):5889-96. PubMed ID: 12421972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD.
    Mauch L; Lun A; O'Gorman MR; Harris JS; Schulze I; Zychlinsky A; Fuchs T; Oelschlägel U; Brenner S; Kutter D; Rösen-Wolff A; Roesler J
    Clin Chem; 2007 May; 53(5):890-6. PubMed ID: 17384005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils.
    Wanikiat P; Woodward DF; Armstrong RA
    Br J Pharmacol; 1997 Nov; 122(6):1135-45. PubMed ID: 9401778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus.
    Aratani Y; Kura F; Watanabe H; Akagawa H; Takano Y; Suzuki K; Dinauer MC; Maeda N; Koyama H
    Med Mycol; 2002 Dec; 40(6):557-63. PubMed ID: 12521119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel post-translational incorporation of tyrosine into multiple proteins in activated human neutrophils. Correlation with phagocytosis and activation of the NADPH oxidase-mediated respiratory burst.
    Nath J; Ohno Y; Gallin JI; Wright DG
    J Immunol; 1992 Nov; 149(10):3360-71. PubMed ID: 1331234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease.
    Lekstrom-Himes JA; Kuhns DB; Alvord WG; Gallin JI
    J Immunol; 2005 Jan; 174(1):411-7. PubMed ID: 15611265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: implications for chronic granulomatous disease.
    Sanmun D; Witasp E; Jitkaew S; Tyurina YY; Kagan VE; Ahlin A; Palmblad J; Fadeel B
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C621-31. PubMed ID: 19570889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing.
    Hampton MB; Kettle AJ; Winterbourn CC
    Blood; 1998 Nov; 92(9):3007-17. PubMed ID: 9787133
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of myeloperoxidase activity in leukocytes from normal subjects and patients with chronic granulomatous disease.
    Pegram PS; DeChatelet LR; McCall CE
    J Infect Dis; 1978 Nov; 138(5):699-702. PubMed ID: 213506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Contribution of neutrophils to Aspergillus infection].
    Suzuki K
    Nihon Ishinkin Gakkai Zasshi; 2002; 43(3):153-60. PubMed ID: 12145629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of BAY 41-2272, an activator of nitric oxide-independent site of soluble guanylate cyclase, on human NADPH oxidase system from THP-1 cells.
    Borges de Oliveira-Junior E; Thomazzi SM; Rehder J; Antunes E; Condino-Neto A
    Eur J Pharmacol; 2007 Jul; 567(1-2):43-9. PubMed ID: 17499238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation.
    Meotti FC; Jameson GN; Turner R; Harwood DT; Stockwell S; Rees MD; Thomas SR; Kettle AJ
    J Biol Chem; 2011 Apr; 286(15):12901-11. PubMed ID: 21266577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of myeloperoxidase in the respiratory burst of human neutrophils.
    Nauseef WM; Metcalf JA; Root RK
    Blood; 1983 Mar; 61(3):483-92. PubMed ID: 6297637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redundant contribution of myeloperoxidase-dependent systems to neutrophil-mediated killing of Escherichia coli.
    Rosen H; Michel BR
    Infect Immun; 1997 Oct; 65(10):4173-8. PubMed ID: 9317024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase.
    Tsurubuchi T; Aratani Y; Maeda N; Koyama H
    J Leukoc Biol; 2001 Jul; 70(1):52-8. PubMed ID: 11435485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of oxygen radicals by fibroblasts and neutrophils from a patient with x-linked chronic granulomatous disease.
    Emmendörffer A; Roesler J; Elsner J; Raeder E; Lohmann-Matthes ML; Meier B
    Eur J Haematol; 1993 Oct; 51(4):223-7. PubMed ID: 8243611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic granulomatous disease: more than the lack of superoxide?
    Geiszt M; Kapus A; Ligeti E
    J Leukoc Biol; 2001 Feb; 69(2):191-6. PubMed ID: 11272268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite.
    Lee C; Miura K; Liu X; Zweier JL
    J Biol Chem; 2000 Dec; 275(50):38965-72. PubMed ID: 10976106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEGylated D-amino acid oxidase restores bactericidal activity of neutrophils in chronic granulomatous disease via hypochlorite.
    Nakamura H; Fang J; Mizukami T; Nunoi H; Maeda H
    Exp Biol Med (Maywood); 2012 Jun; 237(6):703-8. PubMed ID: 22715431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils.
    Henderson WR; Klebanoff SJ
    J Biol Chem; 1983 Nov; 258(22):13522-7. PubMed ID: 6315700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.