These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 12421972)
1. Characterization of nitric oxide consumption pathways by normal, chronic granulomatous disease and myeloperoxidase-deficient human neutrophils. Clark SR; Coffey MJ; Maclean RM; Collins PW; Lewis MJ; Cross AR; O'Donnell VB J Immunol; 2002 Nov; 169(10):5889-96. PubMed ID: 12421972 [TBL] [Abstract][Full Text] [Related]
2. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Mauch L; Lun A; O'Gorman MR; Harris JS; Schulze I; Zychlinsky A; Fuchs T; Oelschlägel U; Brenner S; Kutter D; Rösen-Wolff A; Roesler J Clin Chem; 2007 May; 53(5):890-6. PubMed ID: 17384005 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils. Wanikiat P; Woodward DF; Armstrong RA Br J Pharmacol; 1997 Nov; 122(6):1135-45. PubMed ID: 9401778 [TBL] [Abstract][Full Text] [Related]
4. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Aratani Y; Kura F; Watanabe H; Akagawa H; Takano Y; Suzuki K; Dinauer MC; Maeda N; Koyama H Med Mycol; 2002 Dec; 40(6):557-63. PubMed ID: 12521119 [TBL] [Abstract][Full Text] [Related]
5. A novel post-translational incorporation of tyrosine into multiple proteins in activated human neutrophils. Correlation with phagocytosis and activation of the NADPH oxidase-mediated respiratory burst. Nath J; Ohno Y; Gallin JI; Wright DG J Immunol; 1992 Nov; 149(10):3360-71. PubMed ID: 1331234 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. Lekstrom-Himes JA; Kuhns DB; Alvord WG; Gallin JI J Immunol; 2005 Jan; 174(1):411-7. PubMed ID: 15611265 [TBL] [Abstract][Full Text] [Related]
7. Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: implications for chronic granulomatous disease. Sanmun D; Witasp E; Jitkaew S; Tyurina YY; Kagan VE; Ahlin A; Palmblad J; Fadeel B Am J Physiol Cell Physiol; 2009 Sep; 297(3):C621-31. PubMed ID: 19570889 [TBL] [Abstract][Full Text] [Related]
8. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Hampton MB; Kettle AJ; Winterbourn CC Blood; 1998 Nov; 92(9):3007-17. PubMed ID: 9787133 [No Abstract] [Full Text] [Related]
9. Comparison of myeloperoxidase activity in leukocytes from normal subjects and patients with chronic granulomatous disease. Pegram PS; DeChatelet LR; McCall CE J Infect Dis; 1978 Nov; 138(5):699-702. PubMed ID: 213506 [TBL] [Abstract][Full Text] [Related]
10. [Contribution of neutrophils to Aspergillus infection]. Suzuki K Nihon Ishinkin Gakkai Zasshi; 2002; 43(3):153-60. PubMed ID: 12145629 [TBL] [Abstract][Full Text] [Related]
11. Effects of BAY 41-2272, an activator of nitric oxide-independent site of soluble guanylate cyclase, on human NADPH oxidase system from THP-1 cells. Borges de Oliveira-Junior E; Thomazzi SM; Rehder J; Antunes E; Condino-Neto A Eur J Pharmacol; 2007 Jul; 567(1-2):43-9. PubMed ID: 17499238 [TBL] [Abstract][Full Text] [Related]
12. Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. Meotti FC; Jameson GN; Turner R; Harwood DT; Stockwell S; Rees MD; Thomas SR; Kettle AJ J Biol Chem; 2011 Apr; 286(15):12901-11. PubMed ID: 21266577 [TBL] [Abstract][Full Text] [Related]
13. Role of myeloperoxidase in the respiratory burst of human neutrophils. Nauseef WM; Metcalf JA; Root RK Blood; 1983 Mar; 61(3):483-92. PubMed ID: 6297637 [TBL] [Abstract][Full Text] [Related]
14. Redundant contribution of myeloperoxidase-dependent systems to neutrophil-mediated killing of Escherichia coli. Rosen H; Michel BR Infect Immun; 1997 Oct; 65(10):4173-8. PubMed ID: 9317024 [TBL] [Abstract][Full Text] [Related]
15. Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase. Tsurubuchi T; Aratani Y; Maeda N; Koyama H J Leukoc Biol; 2001 Jul; 70(1):52-8. PubMed ID: 11435485 [TBL] [Abstract][Full Text] [Related]
16. Production of oxygen radicals by fibroblasts and neutrophils from a patient with x-linked chronic granulomatous disease. Emmendörffer A; Roesler J; Elsner J; Raeder E; Lohmann-Matthes ML; Meier B Eur J Haematol; 1993 Oct; 51(4):223-7. PubMed ID: 8243611 [TBL] [Abstract][Full Text] [Related]
17. Chronic granulomatous disease: more than the lack of superoxide? Geiszt M; Kapus A; Ligeti E J Leukoc Biol; 2001 Feb; 69(2):191-6. PubMed ID: 11272268 [TBL] [Abstract][Full Text] [Related]
18. Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite. Lee C; Miura K; Liu X; Zweier JL J Biol Chem; 2000 Dec; 275(50):38965-72. PubMed ID: 10976106 [TBL] [Abstract][Full Text] [Related]
19. PEGylated D-amino acid oxidase restores bactericidal activity of neutrophils in chronic granulomatous disease via hypochlorite. Nakamura H; Fang J; Mizukami T; Nunoi H; Maeda H Exp Biol Med (Maywood); 2012 Jun; 237(6):703-8. PubMed ID: 22715431 [TBL] [Abstract][Full Text] [Related]
20. Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils. Henderson WR; Klebanoff SJ J Biol Chem; 1983 Nov; 258(22):13522-7. PubMed ID: 6315700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]