These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12422017)

  • 1. Invisible liposomes: refractive index matching with sucrose enables flow dichroism assessment of peptide orientation in lipid vesicle membrane.
    Ardhammar M; Lincoln P; Nordén B
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15313-7. PubMed ID: 12422017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan orientations in membrane-bound gramicidin and melittin-a comparative linear dichroism study on transmembrane and surface-bound peptides.
    Svensson FR; Lincoln P; Nordén B; Esbjörner EK
    Biochim Biophys Acta; 2011 Jan; 1808(1):219-28. PubMed ID: 20951675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow Linear Dichroism of Protein-Membrane Systems.
    Hicks MR; Dennison SR; Olamoyesan A; Rodger A
    Methods Mol Biol; 2021; 2263():449-463. PubMed ID: 33877612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron radiation linear dichroism spectroscopy of the antibiotic peptide gramicidin in lipid membranes.
    Hicks MR; Dafforn TR; Damianoglou A; Wormell P; Rodger A; Hoffmann SV
    Analyst; 2009 Aug; 134(8):1623-8. PubMed ID: 20448930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation of gramicidin A transmembrane channel. Infrared dichroism study of gramicidin in vesicles.
    Nabedryk E; Gingold MP; Breton J
    Biophys J; 1982 Jun; 38(3):243-9. PubMed ID: 6179549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation and lipid-peptide interactions of gramicidin A in lipid membranes: polarized attenuated total reflection infrared spectroscopy and spin-label electron spin resonance.
    Kóta Z; Páli T; Marsh D
    Biophys J; 2004 Mar; 86(3):1521-31. PubMed ID: 14990479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High anisotropy of flow-aligned bicellar membrane systems.
    Kogan M; Nordén B; Beke-Somfai T
    Chem Phys Lipids; 2013; 175-176():105-15. PubMed ID: 23999012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process.
    Hicks MR; Damianoglou A; Rodger A; Dafforn TR
    J Mol Biol; 2008 Nov; 383(2):358-66. PubMed ID: 18755199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin.
    Prosser RS; Daleman SI; Davis JH
    Biophys J; 1994 May; 66(5):1415-28. PubMed ID: 7520293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-induced membrane fusion in viscous solutions.
    Kogan M; Feng B; Nordén B; Rocha S; Beke-Somfai T
    Langmuir; 2014 May; 30(17):4875-8. PubMed ID: 24758573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation and conformation of cell-penetrating peptide penetratin in phospholipid vesicle membranes determined by polarized-light spectroscopy.
    Brattwall CE; Lincoln P; Nordén B
    J Am Chem Soc; 2003 Nov; 125(47):14214-5. PubMed ID: 14624535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of a photochromic spiropyran with liposome model membranes.
    Jonsson F; Beke-Somfai T; Andréasson J; Nordén B
    Langmuir; 2013 Feb; 29(7):2099-103. PubMed ID: 23379890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.
    Mateo CR; Souto AA; Amat-Guerri F; Acuña AU
    Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering.
    Gilbert RJ; Heenan RK; Timmins PA; Gingles NA; Mitchell TJ; Rowe AJ; Rossjohn J; Parker MW; Andrew PW; Byron O
    J Mol Biol; 1999 Nov; 293(5):1145-60. PubMed ID: 10547292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescent dipyridophenazine-ruthenium probes for liposome membranes.
    Svensson FR; Li M; Nordén B; Lincoln P
    J Phys Chem B; 2008 Sep; 112(35):10969-75. PubMed ID: 18698812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing heat capacity profiles of peptide-containing membranes: cluster formation of gramicidin A.
    Ivanova VP; Makarov IM; Schäffer TE; Heimburg T
    Biophys J; 2003 Apr; 84(4):2427-39. PubMed ID: 12668450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A.
    Smith R; Thomas DE; Separovic F; Atkins AR; Cornell BA
    Biophys J; 1989 Aug; 56(2):307-14. PubMed ID: 2476189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective lipid-detergent system for study of membrane active peptides in fluid liposomes.
    Sychev SV; Sukhanov SV; Telezhinskaya IN; Ovchinnikova TV
    J Pept Sci; 2016 Feb; 22(2):98-105. PubMed ID: 26751806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.