These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12423022)

  • 1. Fungal ABC transporters and microbial interactions in natural environments.
    Schoonbeek HJ; Raaijmakers JM; De Waard MA
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1165-72. PubMed ID: 12423022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil.
    Vermeulen T; Schoonbeek H; De Waard MA
    Pest Manag Sci; 2001 May; 57(5):393-402. PubMed ID: 11374155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol.
    Schouten A; Maksimova O; Cuesta-Arenas Y; van den Berg G; Raaijmakers JM
    Environ Microbiol; 2008 May; 10(5):1145-57. PubMed ID: 18218030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil.
    Schoonbeek H; Del Sorbo G; De Waard MA
    Mol Plant Microbe Interact; 2001 Apr; 14(4):562-71. PubMed ID: 11310744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry.
    Li X; Fernández-Ortuño D; Grabke A; Schnabel G
    Phytopathology; 2014 Jul; 104(7):724-32. PubMed ID: 24423402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana.
    Stefanato FL; Abou-Mansour E; Buchala A; Kretschmer M; Mosbach A; Hahn M; Bochet CG; Métraux JP; Schoonbeek HJ
    Plant J; 2009 May; 58(3):499-510. PubMed ID: 19154205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidrug resistance of
    Wu Z; Bi Y; Zhang J; Gao T; Li X; Hao J; Li G; Liu P; Liu X
    mBio; 2024 Feb; 15(2):e0223723. PubMed ID: 38259067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).
    Del Sorbo G; Ruocco M; Schoonbeek HJ; Scala F; Pane C; Vinale F; De Waard MA
    Mycol Res; 2008 Jun; 112(Pt 6):737-46. PubMed ID: 18515055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt.
    Mazurier S; Corberand T; Lemanceau P; Raaijmakers JM
    ISME J; 2009 Aug; 3(8):977-91. PubMed ID: 19369971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Xenobiotic Detoxification Pathway through Transcriptional Regulation in Filamentous Fungi.
    Sang H; Hulvey JP; Green R; Xu H; Im J; Chang T; Jung G
    mBio; 2018 Jul; 9(4):. PubMed ID: 30018104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and functional analyses on a Botrytis cinerea multidrug-resistant (MDR) strain provides new insights into the potential molecular mechanisms of MDR and fitness.
    Sofianos G; Piombo E; Dubey M; Karlsson M; Karaoglanidis G; Tzelepis G
    Mol Plant Pathol; 2024 Sep; 25(9):e70004. PubMed ID: 39244735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analysis of Resistant and Wild-Type
    Liu M; Peng J; Wang X; Zhang W; Zhou Y; Wang H; Li X; Yan J; Duan L
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674501
    [No Abstract]   [Full Text] [Related]  

  • 14. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens.
    Andreolli M; Zapparoli G; Angelini E; Lucchetta G; Lampis S; Vallini G
    Microbiol Res; 2019 Feb; 219():123-131. PubMed ID: 30642463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
    Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y
    Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
    Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent Emergence of Resistance to Seven Chemical Classes of Fungicides in Botrytis cinerea.
    Fernández-Ortuño D; Grabke A; Li X; Schnabel G
    Phytopathology; 2015 Apr; 105(4):424-32. PubMed ID: 25317841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit.
    Jurick WM; Macarisin O; Gaskins VL; Park E; Yu J; Janisiewicz W; Peter KA
    Phytopathology; 2017 Mar; 107(3):362-368. PubMed ID: 27841961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activities of an endophytic Pseudomonas fluorescens strain Pf1TZ harbouring genes from pyoluteorin and phenazine clusters.
    Kilani-Feki O; Khiari O; Culioli G; Ortalo-Magné A; Zouari N; Blache Y; Jaoua S
    Biotechnol Lett; 2010 Sep; 32(9):1279-85. PubMed ID: 20458521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides.
    Hayashi K; Schoonbeek HJ; De Waard MA
    Appl Environ Microbiol; 2002 Oct; 68(10):4996-5004. PubMed ID: 12324349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.