These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12423047)

  • 1. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.
    Lupi C; Pilone D
    Waste Manag; 2002; 22(8):871-4. PubMed ID: 12423047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.
    Sobianowska-Turek A
    Waste Manag; 2018 Jul; 77():213-219. PubMed ID: 29655922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.
    Huang K; Li J; Xu Z
    Waste Manag; 2011 Jun; 31(6):1292-9. PubMed ID: 21295459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni-Cd Batteries Using Adogen
    Weshahy AR; Sakr AK; Gouda AA; Atia BM; Somaily HH; Hanfi MY; Sayyed MI; El Sheikh R; El-Sheikh EM; Radwan HA; Cheira MF; Gado MA
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterisation of spent rechargeable batteries.
    Vassura I; Morselli L; Bernardi E; Passarini F
    Waste Manag; 2009 Aug; 29(8):2332-5. PubMed ID: 19423325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning.
    Vegliò F; Quaresima R; Fornari P; Ubaldini S
    Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.
    Mercieca S; Caligari Conti M; Buhagiar J; Camilleri J
    J Appl Biomater Funct Mater; 2018 Jan; 16(1):47-54. PubMed ID: 29076515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy.
    Ahn NK; Shim HW; Kim DW; Swain B
    Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co(II) and Ni(II) transport from model and real sulfate solutions by extraction with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272).
    Stefaniak J; Karwacka S; Janiszewska M; Dutta A; Rene ER; Regel-Rosocka M
    Chemosphere; 2020 Sep; 254():126869. PubMed ID: 32957283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching properties of Mn-slag from the pyrometallurgical recycling of alkaline batteries: standardized leaching tests and influence of operational parameters.
    Pareuil P; Bordas F; Joussein E; Bollinger JC
    Environ Technol; 2010 Dec; 31(14):1565-76. PubMed ID: 21275253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective recovery of cobalt from the secondary streams after NiMH batteries processing using Cyanex 301.
    Petranikova M; Ebin B; Tunsu C
    Waste Manag; 2019 Jan; 83():194-201. PubMed ID: 30514466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings.
    Guo X; Song Y; Nan J
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5514-5520. PubMed ID: 29218575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and physical characterization of electrode materials of spent sealed Ni-Cd batteries.
    Nogueira CA; Margarido F
    Waste Manag; 2007; 27(11):1570-9. PubMed ID: 17166709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.