These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12423185)

  • 1. Influence of hip orientation on Wingate power output and cycling technique.
    Reiser RF; Peterson ML; Broker JP
    J Strength Cond Res; 2002 Nov; 16(4):556-60. PubMed ID: 12423185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of trunk angle on power production in cycling.
    Too D
    Res Q Exerc Sport; 1994 Dec; 65(4):308-15. PubMed ID: 7886279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and kinematics analysis of incremental cycling to exhaustion.
    Bini RR; Diefenthaeler F
    Sports Biomech; 2010 Nov; 9(4):223-35. PubMed ID: 21309297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knee loads in the standard and recumbent cycling positions.
    Reiser RF; Broker JP; Peterson ML
    Biomed Sci Instrum; 2004; 40():36-42. PubMed ID: 15133932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of locomotor muscle fatigue on joint-specific power production during cycling.
    Elmer SJ; Marshall CS; Wehmanen K; Amann M; McDaniel J; Martin DT; Martin JC
    Med Sci Sports Exerc; 2012 Aug; 44(8):1504-11. PubMed ID: 22343616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint-specific power production during submaximal and maximal cycling.
    Elmer SJ; Barratt PR; Korff T; Martin JC
    Med Sci Sports Exerc; 2011 Oct; 43(10):1940-7. PubMed ID: 21448081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the effect of changing handgrip position on joint specific power and cycling kinematics in recreational and professional cyclists.
    Skovereng K; Aasvold LO; Ettema G
    PLoS One; 2020; 15(8):e0237768. PubMed ID: 32813742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.
    Szecsi J; Straube A; Fornusek C
    Med Eng Phys; 2014 Nov; 36(11):1421-7. PubMed ID: 24924382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding recumbent cycling: instrumentation design and biomechanical analysis.
    Reiser RF; Peterson ML; Broker JP
    Biomed Sci Instrum; 2002; 38():209-14. PubMed ID: 12085603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pedal crank arm length on joint angle and power production in upright cycle ergometry.
    Too D; Landwer GE
    J Sports Sci; 2000 Mar; 18(3):153-61. PubMed ID: 10737266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncircular Chainrings Do Not Influence Maximum Cycling Power.
    Leong CH; Elmer SJ; Martin JC
    J Appl Biomech; 2017 Dec; 33(6):410-418. PubMed ID: 28605248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling with noncircular chainring system changes the three-dimensional kinematics of the lower limbs.
    Carpes FP; Dagnese F; Mota CB; Stefanyshyn DJ
    Sports Biomech; 2009 Nov; 8(4):275-83. PubMed ID: 20169758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations of ankle-foot orthosis-constrained movements increase ankle range of movement while maintaining power output of recumbent cycling.
    Hamdan PNF; Hamzaid NA; Usman J; Islam MA; Kean VSP; Wahab AKA; Hasnan N; Davis GM
    Biomed Tech (Berl); 2018 Nov; 63(6):691-697. PubMed ID: 28915105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of cycling kinetics during recumbent bicycling in subjects with and without diabetes.
    Perell KL; Gregor S; Kim G; Rushatakankovit S; Scremin E; Levin S; Gregor R
    J Rehabil Res Dev; 2002; 39(1):13-20. PubMed ID: 11926324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling.
    Bini RR; Dagnese F; Rocha E; Silveira MC; Carpes FP; Mota CB
    Eur J Sport Sci; 2016 Aug; 16(5):553-9. PubMed ID: 26783692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local muscle oxygen consumption related to external and joint specific power.
    Skovereng K; Ettema G; van Beekvelt M
    Hum Mov Sci; 2016 Feb; 45():161-71. PubMed ID: 26650852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal analysis of 3D kinematic asymmetry in professional cycling during an incremental test to exhaustion.
    Pouliquen C; Nicolas G; Bideau B; Garo G; Megret A; Delamarche P; Bideau N
    J Sports Sci; 2018 Oct; 36(19):2155-2163. PubMed ID: 29381424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postactivation potentiation effect of overloaded cycling on subsequent cycling Wingate performance.
    Doma K; Leicht AS; Schumann M; Nagata A; Senzaki K; Woods CE
    J Sports Med Phys Fitness; 2019 Feb; 59(2):217-222. PubMed ID: 29308849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
    Barratt PR; Martin JC; Elmer SJ; Korff T
    Med Sci Sports Exerc; 2016 Apr; 48(4):705-13. PubMed ID: 26559455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.