These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord. Nehrt A; Hamann K; Ouyang H; Shi R J Neurotrauma; 2010 Jan; 27(1):151-61. PubMed ID: 19691421 [TBL] [Abstract][Full Text] [Related]
4. Neuroprotection from secondary injury by polyethylene glycol requires its internalization. Liu-Snyder P; Logan MP; Shi R; Smith DT; Borgens RB J Exp Biol; 2007 Apr; 210(Pt 8):1455-62. PubMed ID: 17401128 [TBL] [Abstract][Full Text] [Related]
5. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol. Borgens RB; Bohnert D J Neurosci Res; 2001 Dec; 66(6):1179-86. PubMed ID: 11746451 [TBL] [Abstract][Full Text] [Related]
6. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. Shi R; Borgens RB J Neurocytol; 2000 Sep; 29(9):633-43. PubMed ID: 11353287 [TBL] [Abstract][Full Text] [Related]
7. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. Borgens RB; Shi R FASEB J; 2000 Jan; 14(1):27-35. PubMed ID: 10627277 [TBL] [Abstract][Full Text] [Related]
8. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol. Luo J; Shi R Neurosci Lett; 2004 Apr; 359(3):167-70. PubMed ID: 15050690 [TBL] [Abstract][Full Text] [Related]
9. Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury. Shi R Neurosci Bull; 2013 Aug; 29(4):460-6. PubMed ID: 23893430 [TBL] [Abstract][Full Text] [Related]
10. Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. Luo J; Borgens R; Shi R J Neurotrauma; 2004 Aug; 21(8):994-1007. PubMed ID: 15318999 [TBL] [Abstract][Full Text] [Related]
11. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. Cho Y; Shi R; Borgens RB J Exp Biol; 2010 May; 213(Pt 9):1513-20. PubMed ID: 20400636 [TBL] [Abstract][Full Text] [Related]
12. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Luo J; Shi R Brain Res; 2007 Jun; 1155():10-6. PubMed ID: 17512912 [TBL] [Abstract][Full Text] [Related]
13. Effects of prostaglandin E1, melatonin, and oxytetracycline on lipid peroxidation, antioxidant defense system, paraoxonase (PON1) activities, and homocysteine levels in an animal model of spinal cord injury. Topsakal C; Kilic N; Ozveren F; Akdemir I; Kaplan M; Tiftikci M; Gursu F Spine (Phila Pa 1976); 2003 Aug; 28(15):1643-52. PubMed ID: 12897486 [TBL] [Abstract][Full Text] [Related]
14. Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue. Luo J; Shi R Neurochem Int; 2004 Jun; 44(7):475-86. PubMed ID: 15209416 [TBL] [Abstract][Full Text] [Related]
15. The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Bao F; John SM; Chen Y; Mathison RD; Weaver LC Neuroscience; 2006 Jul; 140(3):1011-22. PubMed ID: 16581192 [TBL] [Abstract][Full Text] [Related]
16. Dimethylsulfoxide enhances CNS neuronal plasma membrane resealing after injury in low temperature or low calcium. Shi R; Qiao X; Emerson N; Malcom A J Neurocytol; 2001; 30(9-10):829-39. PubMed ID: 12165673 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of FK506 on lipid peroxidation in the spinal cord following experimental traumatic injury. Kaymaz M; Emmez H; Bukan N; Dursun A; Kurt G; Paşaoğlu H; Paşaoğlu A Spinal Cord; 2005 Jan; 43(1):22-6. PubMed ID: 15111998 [TBL] [Abstract][Full Text] [Related]
18. Acute repair of crushed guinea pig spinal cord by polyethylene glycol. Shi R; Borgens RB J Neurophysiol; 1999 May; 81(5):2406-14. PubMed ID: 10322076 [TBL] [Abstract][Full Text] [Related]
19. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Xu W; Chi L; Xu R; Ke Y; Luo C; Cai J; Qiu M; Gozal D; Liu R Spinal Cord; 2005 Apr; 43(4):204-13. PubMed ID: 15520836 [TBL] [Abstract][Full Text] [Related]
20. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. Hamann K; Nehrt G; Ouyang H; Duerstock B; Shi R J Neurochem; 2008 Feb; 104(3):708-18. PubMed ID: 17995940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]