BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12423357)

  • 21. Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.
    Das A; Ivey DM; Ljungdahl LG
    J Bacteriol; 1997 Mar; 179(5):1714-20. PubMed ID: 9045833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthase.
    Vorburger T; Ebneter JZ; Wiedenmann A; Morger D; Weber G; Diederichs K; Dimroth P; von Ballmoos C
    FEBS J; 2008 May; 275(9):2137-50. PubMed ID: 18384384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F
    Almendro-Vedia VG; Natale P; Mell M; Bonneau S; Monroy F; Joubert F; López-Montero I
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11291-11296. PubMed ID: 29073046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural evidence for a constant c11 ring stoichiometry in the sodium F-ATP synthase.
    Meier T; Yu J; Raschle T; Henzen F; Dimroth P; Muller DJ
    FEBS J; 2005 Nov; 272(21):5474-83. PubMed ID: 16262688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes.
    Mayer F; Lim JK; Langer JD; Kang SG; Müller V
    J Biol Chem; 2015 Mar; 290(11):6994-7002. PubMed ID: 25593316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new type of Na(+)-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif.
    Schulz S; Iglesias-Cans M; Krah A; Yildiz O; Leone V; Matthies D; Cook GM; Faraldo-Gómez JD; Meier T
    PLoS Biol; 2013; 11(6):e1001596. PubMed ID: 23824040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli.
    Zhang C; Allegretti M; Vonck J; Langer JD; Marcia M; Peng G; Michel H
    Biochim Biophys Acta; 2014 Jan; 1840(1):34-40. PubMed ID: 24005236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of coupling proton movements to c-ring rotation in ATP synthase.
    Fillingame RH; Angevine CM; Dmitriev OY
    FEBS Lett; 2003 Nov; 555(1):29-34. PubMed ID: 14630314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump.
    Laubinger W; Dimroth P
    Biochemistry; 1988 Sep; 27(19):7531-7. PubMed ID: 2905167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells.
    Kaim G; Dimroth P
    J Mol Biol; 1995 Nov; 253(5):726-38. PubMed ID: 7473747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum.
    Kaim G; Wehrle F; Gerike U; Dimroth P
    Biochemistry; 1997 Jul; 36(30):9185-94. PubMed ID: 9230051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase.
    Vonck J; von Nidda TK; Meier T; Matthey U; Mills DJ; Kühlbrandt W; Dimroth P
    J Mol Biol; 2002 Aug; 321(2):307-16. PubMed ID: 12144787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Na(+)-translocating F(1)F(0) ATP synthase of Propionigenium modestum: mechanochemical insights into the F(0) motor that drives ATP synthesis.
    Kaim G
    Biochim Biophys Acta; 2001 May; 1505(1):94-107. PubMed ID: 11248192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The coupling ion in the methanoarchaeal ATP synthases: H(+) vs. Na(+) in the A(1)A(o) ATP synthase from the archaeon Methanosarcina mazei Gö1.
    Pisa KY; Weidner C; Maischak H; Kavermann H; Müller V
    FEMS Microbiol Lett; 2007 Dec; 277(1):56-63. PubMed ID: 17986085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage-generated torque drives the motor of the ATP synthase.
    Kaim G; Dimroth P
    EMBO J; 1998 Oct; 17(20):5887-95. PubMed ID: 9774333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases.
    Meier T; Matthey U; von Ballmoos C; Vonck J; Krug von Nidda T; Kühlbrandt W; Dimroth P
    J Mol Biol; 2003 Jan; 325(2):389-97. PubMed ID: 12488103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors.
    Krah A; Pogoryelov D; Langer JD; Bond PJ; Meier T; Faraldo-Gómez JD
    Biochim Biophys Acta; 2010; 1797(6-7):763-72. PubMed ID: 20416273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional asymmetry of the F(0) motor in bacterial ATP synthases.
    Wiedenmann A; Dimroth P; von Ballmoos C
    Mol Microbiol; 2009 Apr; 72(2):479-90. PubMed ID: 19317834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial Na(+)-ATP synthase has an undecameric rotor.
    Stahlberg H; Müller DJ; Suda K; Fotiadis D; Engel A; Meier T; Matthey U; Dimroth P
    EMBO Rep; 2001 Mar; 2(3):229-33. PubMed ID: 11266365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.