BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12423362)

  • 41. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.
    Guo Y; Mietkiewska E; Francis T; Katavic V; Brost JM; Giblin M; Barton DL; Taylor DC
    Plant Mol Biol; 2009 Mar; 69(5):565-75. PubMed ID: 19082744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Breeding response of transcript profiling in developing seeds of Brassica napus.
    Hu Y; Wu G; Cao Y; Wu Y; Xiao L; Li X; Lu C
    BMC Mol Biol; 2009 May; 10():49. PubMed ID: 19463193
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.
    Xu J; Francis T; Mietkiewska E; Giblin EM; Barton DL; Zhang Y; Zhang M; Taylor DC
    Plant Biotechnol J; 2008 Oct; 6(8):799-818. PubMed ID: 18631243
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-compatibility in Brassica napus is caused by independent mutations in S-locus genes.
    Okamoto S; Odashima M; Fujimoto R; Sato Y; Kitashiba H; Nishio T
    Plant J; 2007 May; 50(3):391-400. PubMed ID: 17425715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study.
    Zhu Q; King GJ; Liu X; Shan N; Borpatragohain P; Baten A; Wang P; Luo S; Zhou Q
    PLoS One; 2019; 14(8):e0221578. PubMed ID: 31442274
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the linkage relationship between the flower colour and the content of erucic acid in the resynthesized Brassica napus L.
    Liu XP; Tu JX; Chen BY; Fu TD
    Yi Chuan Xue Bao; 2004 Apr; 31(4):357-62. PubMed ID: 15487503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid.
    Mietkiewska E; Giblin EM; Wang S; Barton DL; Dirpaul J; Brost JM; Katavic V; Taylor DC
    Plant Physiol; 2004 Sep; 136(1):2665-75. PubMed ID: 15333757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The functional divergence of homologous GPAT9 genes contributes to the erucic acid content of Brassica napus seeds.
    Liu H; Zhu J; Zhang B; Li Q; Liu C; Huang Q; Cui P
    BMC Plant Biol; 2024 Jan; 24(1):69. PubMed ID: 38262947
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica.
    Wang YP; Sonntag K; Rudloff E
    Theor Appl Genet; 2003 May; 106(7):1147-55. PubMed ID: 12687349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator.
    James DW; Lim E; Keller J; Plooy I; Ralston E; Dooner HK
    Plant Cell; 1995 Mar; 7(3):309-19. PubMed ID: 7734965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seed Oil Quality of
    Cartea E; De Haro-Bailón A; Padilla G; Obregón-Cano S; Del Rio-Celestino M; Ordás A
    Foods; 2019 Jul; 8(8):. PubMed ID: 31357590
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil.
    Lassner MW; Levering CK; Davies HM; Knutzon DS
    Plant Physiol; 1995 Dec; 109(4):1389-94. PubMed ID: 8539298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers.
    Qu C; Jia L; Fu F; Zhao H; Lu K; Wei L; Xu X; Liang Y; Li S; Wang R; Li J
    BMC Genomics; 2017 Mar; 18(1):232. PubMed ID: 28292259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.
    Li ZG; Yin WB; Guo H; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM
    Genome; 2010 May; 53(5):360-70. PubMed ID: 20616867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds.
    Havlickova L; He Z; Wang L; Langer S; Harper AL; Kaur H; Broadley MR; Gegas V; Bancroft I
    Plant J; 2018 Jan; 93(1):181-192. PubMed ID: 29124814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of erucic acid biosynthesis in Camelina (Camelina sativa) by antisense technology.
    Bashiri H; Kahrizi D; Salmanian AH; Rahnama H; Azadi P
    Cell Mol Biol (Noisy-le-grand); 2023 Jul; 69(7):212-217. PubMed ID: 37715377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.
    Metz JG; Pollard MR; Anderson L; Hayes TR; Lassner MW
    Plant Physiol; 2000 Mar; 122(3):635-44. PubMed ID: 10712526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.).
    Claver A; Rey R; López MV; Picorel R; Alfonso M
    J Plant Physiol; 2017 Jan; 208():7-16. PubMed ID: 27889523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An insight in the genetic control and interrelationship of some quality traits in Brassica napus.
    Ahmad S; Sadaqat HA; Tahir MH; Awan FS
    Genet Mol Res; 2015 Dec; 14(4):17941-50. PubMed ID: 26782440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene.
    Jadhav A; Katavic V; Marillia EF; Michael Giblin E; Barton DL; Kumar A; Sonntag C; Babic V; Keller WA; Taylor DC
    Metab Eng; 2005 May; 7(3):215-20. PubMed ID: 15885619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.