BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12423911)

  • 1. Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haplosclerida).
    Richelle-Maurer E; Gomez R; Braekman JC; Van de Vyver G; Van Soest RW; Devijver C
    J Biotechnol; 2003 Jan; 100(2):169-76. PubMed ID: 12423911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley).
    Zhang W; Zhang X; Cao X; Xu J; Zhao Q; Yu X; Jin M; Deng M
    J Biotechnol; 2003 Jan; 100(2):161-8. PubMed ID: 12423910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847).
    Nickel M; Brümmer F
    J Biotechnol; 2003 Jan; 100(2):147-59. PubMed ID: 12423909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brominated polyacetylenic acids from the marine sponge Xestospongia muta: inhibitors of HIV protease.
    Patil AD; Kokke WC; Cochran S; Francis TA; Tomszek T; Westley JW
    J Nat Prod; 1992 Sep; 55(9):1170-7. PubMed ID: 1431940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor.
    Osinga R; Belarbi el H; Grima EM; Tramper J; Wijffels RH
    J Biotechnol; 2003 Jan; 100(2):141-6. PubMed ID: 12423908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primmorphs from seven marine sponges: formation and structure.
    Sipkema D; van Wielink R; van Lammeren AA; Tramper J; Osinga R; Wijffels RH
    J Biotechnol; 2003 Jan; 100(2):127-39. PubMed ID: 12423907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron.
    Le Pennec G; Perovic S; Ammar MS; Grebenjuk VA; Steffen R; Brümmer F; Müller WE
    J Biotechnol; 2003 Jan; 100(2):93-108. PubMed ID: 12423904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sponge (2',5')oligoadenylate synthetase activity in the whole sponge organism and in a primary cell culture.
    Kelve M; Kuusksalu A; Lopp A; Reintamm T
    J Biotechnol; 2003 Jan; 100(2):177-80. PubMed ID: 12423912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taxonomy of Petrosiidae Van Soest, 1980 (Haplosclerida, Porifera) from Brazil.
    Rocha L; Moraes F; Salani S; Hajdu E
    Zootaxa; 2021 Jul; 5004(2):251-287. PubMed ID: 34811307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity.
    de Caralt S; Agell G; Uriz MJ
    Biomol Eng; 2003 Jul; 20(4-6):339-47. PubMed ID: 12919818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth.
    Villegas-Plazas M; Wos-Oxley ML; Sanchez JA; Pieper DH; Thomas OP; Junca H
    Microb Ecol; 2019 Jul; 78(1):243-256. PubMed ID: 30413836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis.
    Garson MJ; Zimmermann MP; Battershill CN; Holden JL; Murphy PT
    Lipids; 1994 Jul; 29(7):509-16. PubMed ID: 7968273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta.
    López-Legentil S; Song B; McMurray SE; Pawlik JR
    Mol Ecol; 2008 Apr; 17(7):1840-9. PubMed ID: 18331247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys.
    McMurray SE; Henkel TP; Pawlik JR
    Ecology; 2010 Feb; 91(2):560-70. PubMed ID: 20392020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primmorphs from archaeocytes-dominant cell population of the sponge hymeniacidon perleve: improved cell proliferation and spiculogenesis.
    Zhang X; Cao X; Zhang W; Yu X; Jin M
    Biotechnol Bioeng; 2003 Dec; 84(5):583-90. PubMed ID: 14574692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen?
    Fiore CL; Baker DM; Lesser MP
    PLoS One; 2013; 8(8):e72961. PubMed ID: 23991166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates.
    Vilanova E; Coutinho C; Maia G; Mourão PA
    Cell Tissue Res; 2010 Jun; 340(3):523-31. PubMed ID: 20376489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nepheliosyne A, new C47 acetylenic acid from the Okinawan marine sponge Xestospongia sp.
    Kobayashi J; Naitoh K; Ishida K; Shigemori H; Ishibashi M
    J Nat Prod; 1994 Sep; 57(9):1300-3. PubMed ID: 7798966
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative studies on two potential methods for the biotechnological production of sponge biomass.
    Nickel M; Leininger S; Proll G; Brümmer F
    J Biotechnol; 2001 Dec; 92(2):169-78. PubMed ID: 11640986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolites and Bioactivity of the Marine
    Khodzori FA; Mazlan NB; Chong WS; Ong KH; Palaniveloo K; Shah MD
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.