These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12424121)
1. A simulated annealing algorithm for finding consensus sequences. Keith JM; Adams P; Bryant D; Kroese DP; Mitchelson KR; Cochran DA; Lala GH Bioinformatics; 2002 Nov; 18(11):1494-9. PubMed ID: 12424121 [TBL] [Abstract][Full Text] [Related]
2. Generating consensus sequences from partial order multiple sequence alignment graphs. Lee C Bioinformatics; 2003 May; 19(8):999-1008. PubMed ID: 12761063 [TBL] [Abstract][Full Text] [Related]
3. Multiple alignment using hidden Markov models. Eddy SR Proc Int Conf Intell Syst Mol Biol; 1995; 3():114-20. PubMed ID: 7584426 [TBL] [Abstract][Full Text] [Related]
4. Subtle motifs: defining the limits of motif finding algorithms. Keich U; Pevzner PA Bioinformatics; 2002 Oct; 18(10):1382-90. PubMed ID: 12376383 [TBL] [Abstract][Full Text] [Related]
5. Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid. Rasmussen TK; Krink T Biosystems; 2003 Nov; 72(1-2):5-17. PubMed ID: 14642655 [TBL] [Abstract][Full Text] [Related]
6. A graph based algorithm for generating EST consensus sequences. Malde K; Coward E; Jonassen I Bioinformatics; 2005 Apr; 21(8):1371-5. PubMed ID: 15572463 [TBL] [Abstract][Full Text] [Related]
7. Bayesian restoration of a hidden Markov chain with applications to DNA sequencing. Churchill GA; Lazareva B J Comput Biol; 1999; 6(2):261-77. PubMed ID: 10421527 [TBL] [Abstract][Full Text] [Related]
8. Finding motifs in the twilight zone. Keich U; Pevzner PA Bioinformatics; 2002 Oct; 18(10):1374-81. PubMed ID: 12376382 [TBL] [Abstract][Full Text] [Related]
9. Algorithms for sequence analysis via mutagenesis. Keith JM; Adams P; Bryant D; Cochran DA; Lala GH; Mitchelson KR Bioinformatics; 2004 Oct; 20(15):2401-10. PubMed ID: 15145816 [TBL] [Abstract][Full Text] [Related]
11. Multiple alignment using simulated annealing: branch point definition in human mRNA splicing. Lukashin AV; Engelbrecht J; Brunak S Nucleic Acids Res; 1992 May; 20(10):2511-6. PubMed ID: 1598209 [TBL] [Abstract][Full Text] [Related]
12. Robust prediction of consensus secondary structures using averaged base pairing probability matrices. Kiryu H; Kin T; Asai K Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698 [TBL] [Abstract][Full Text] [Related]
13. Probabilistic nucleotide assembling method for sequencing by hybridization. Endo TA Bioinformatics; 2004 Sep; 20(14):2181-8. PubMed ID: 15073000 [TBL] [Abstract][Full Text] [Related]
14. A hidden Markov model for progressive multiple alignment. Löytynoja A; Milinkovitch MC Bioinformatics; 2003 Aug; 19(12):1505-13. PubMed ID: 12912831 [TBL] [Abstract][Full Text] [Related]
15. Accuracy assessment of diploid consensus sequences. Kim JH; Waterman MS; Li LM IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):88-97. PubMed ID: 17277416 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary HMMs: a Bayesian approach to multiple alignment. Holmes I; Bruno WJ Bioinformatics; 2001 Sep; 17(9):803-20. PubMed ID: 11590097 [TBL] [Abstract][Full Text] [Related]
17. A divide-and-conquer approach to fragment assembly. Otu HH; Sayood K Bioinformatics; 2003 Jan; 19(1):22-9. PubMed ID: 12499289 [TBL] [Abstract][Full Text] [Related]
18. DNA motif alignment by evolving a population of Markov chains. Bi C BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S13. PubMed ID: 19208112 [TBL] [Abstract][Full Text] [Related]
19. Detecting overlapping coding sequences with pairwise alignments. Firth AE; Brown CM Bioinformatics; 2005 Feb; 21(3):282-92. PubMed ID: 15347574 [TBL] [Abstract][Full Text] [Related]
20. Voting algorithms for the motif finding problem. Liu X; Ma B; Wang L Comput Syst Bioinformatics Conf; 2008; 7():37-47. PubMed ID: 19642267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]