These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12424288)

  • 1. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech.
    Scuri R; Mozzachiodi R; Brunelli M
    J Neurophysiol; 2002 Nov; 88(5):2490-500. PubMed ID: 12424288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech.
    Scuri R; Lombardo P; Cataldo E; Ristori C; Brunelli M
    Eur J Neurosci; 2007 Jan; 25(1):159-67. PubMed ID: 17241277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons.
    Scuri R; Mozzachiodi R; Brunelli M
    J Neurophysiol; 2005 Aug; 94(2):1066-73. PubMed ID: 15872070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonergic modulation of afterhyperpolarization in a neuron that contributes to learning in the leech.
    Burrell BD; Crisp KM
    J Neurophysiol; 2008 Feb; 99(2):605-16. PubMed ID: 18046001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetyl-L-carnitine induces a sustained potentiation of the afterhyperpolarization.
    Lombardo P; Scuri R; Cataldo E; Calvani M; Nicolai R; Mosconi L; Brunelli M
    Neuroscience; 2004; 128(2):293-303. PubMed ID: 15350642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model of touch sensory cells (T Cells) of the leech: role of the afterhyperpolarization (AHP) in activity-dependent conduction failure.
    Cataldo E; Brunelli M; Byrne JH; Av-Ron E; Cai Y; Baxter DA
    J Comput Neurosci; 2005; 18(1):5-24. PubMed ID: 15789166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech.
    Velázquez-Ulloa N; Blackshaw SE; Szczupak L; Trueta C; García E; De-Miguel FF
    J Neurobiol; 2003 Mar; 54(4):604-17. PubMed ID: 12555272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Ca2+-independent slow afterhyperpolarization in substantia nigra compacta neurons.
    Nedergaard S
    Neuroscience; 2004; 125(4):841-52. PubMed ID: 15120845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech.
    Grey KB; Burrell BD
    J Neurophysiol; 2008 May; 99(5):2719-24. PubMed ID: 18337371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of sodium pump restores membrane potential to neurons excited by glutamate in zebrafish distal retina.
    Nelson R; Bender AM; Connaughton VP
    J Physiol; 2003 Jun; 549(Pt 3):787-800. PubMed ID: 12730339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotoxic effects of caulerpenyne.
    Brunelli M; Garcia-Gil M; Mozzachiodi R; Roberto M; Scuri R; Traina G; Zaccardi ML
    Prog Neuropsychopharmacol Biol Psychiatry; 2000 Aug; 24(6):939-54. PubMed ID: 11041536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP mediates inhibition of the Na(+)-K+ electrogenic pump by serotonin in tactile sensory neurones of the leech.
    Catarsi S; Scuri R; Brunelli M
    J Physiol; 1993 Mar; 462():229-42. PubMed ID: 7687293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mechanoafferent neurons in terrestrial snail: response properties and synaptic connections.
    Malyshev AY; Balaban PM
    J Neurophysiol; 2002 May; 87(5):2364-71. PubMed ID: 11976374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency coding of positional information by an identified neuron, the AP cell, in the leech, Whitmania pigra.
    Shan D; Zhang RJ
    Brain Res Bull; 2001 Dec; 56(6):511-5. PubMed ID: 11786234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus-evoked modulation of sensorimotor pyramidal neuron EPSPs.
    Kohn A; Metz C; Tommerdahl MA; Whitsel BL
    J Neurophysiol; 2002 Dec; 88(6):3331-47. PubMed ID: 12466450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons.
    Franceschetti S; Lavazza T; Curia G; Aracri P; Panzica F; Sancini G; Avanzini G; Magistretti J
    J Neurophysiol; 2003 Apr; 89(4):2101-11. PubMed ID: 12686580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time measurements of synaptic autoinhibition produced by serotonin release in cultured leech neurons.
    Cercós MG; De-Miguel FF; Trueta C
    J Neurophysiol; 2009 Aug; 102(2):1075-85. PubMed ID: 19535486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-induced reversal of the effect of noradrenalin on the postburst AHP.
    Brosh I; Rosenblum K; Barkai E
    J Neurophysiol; 2006 Oct; 96(4):1728-33. PubMed ID: 16823026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paraoxon suppresses Ca(2+) spike and afterhyperpolarization in snail neurons: Relevance to the hyperexcitability induction.
    Vatanparast J; Janahmadi M; Asgari AR; Sepehri H; Haeri-Rohani A
    Brain Res; 2006 Apr; 1083(1):110-7. PubMed ID: 16566905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.