These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 12424529)
1. A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. Bauch CT J Math Biol; 2002 Nov; 45(5):375-95. PubMed ID: 12424529 [TBL] [Abstract][Full Text] [Related]
2. Monogamous networks and the spread of sexually transmitted diseases. Eames KT; Keeling MJ Math Biosci; 2004 Jun; 189(2):115-30. PubMed ID: 15094315 [TBL] [Abstract][Full Text] [Related]
3. Modelling sexually transmitted infections: the effect of partnership activity and number of partners on R0. Britton T; Nordvik MK; Liljeros F Theor Popul Biol; 2007 Nov; 72(3):389-99. PubMed ID: 17707873 [TBL] [Abstract][Full Text] [Related]
4. Novel moment closure approximations in stochastic epidemics. Krishnarajah I; Cook A; Marion G; Gibson G Bull Math Biol; 2005 Jul; 67(4):855-73. PubMed ID: 15893556 [TBL] [Abstract][Full Text] [Related]
5. A moment closure model for sexually transmitted disease transmission through a concurrent partnership network. Bauch C; Rand DA Proc Biol Sci; 2000 Oct; 267(1456):2019-27. PubMed ID: 11075716 [TBL] [Abstract][Full Text] [Related]
7. A stochastic model for the spread of a sexually transmitted disease which results in a scale-free network. Reed WJ Math Biosci; 2006 May; 201(1-2):3-14. PubMed ID: 16466750 [TBL] [Abstract][Full Text] [Related]
8. The spread of infectious diseases in spatially structured populations: an invasory pair approximation. Bauch CT Math Biosci; 2005 Dec; 198(2):217-37. PubMed ID: 16112687 [TBL] [Abstract][Full Text] [Related]
9. Prevention strategies for sexually transmitted infections: importance of sexual network structure and epidemic phase. Ward H Sex Transm Infect; 2007 Aug; 83 Suppl 1():i43-49. PubMed ID: 17389716 [TBL] [Abstract][Full Text] [Related]
10. Threshold parameters for a simple stochastic partnership model of sexually transmitted diseases formulated as a two-type CMJ process. Mode CJ IMA J Math Appl Med Biol; 1997 Dec; 14(4):251-60. PubMed ID: 9415994 [TBL] [Abstract][Full Text] [Related]
11. Determinants and consequences of sexual networks as they affect the spread of sexually transmitted infections. Doherty IA; Padian NS; Marlow C; Aral SO J Infect Dis; 2005 Feb; 191 Suppl 1():S42-54. PubMed ID: 15627230 [TBL] [Abstract][Full Text] [Related]
12. Comparing approximations to spatio-temporal models for epidemics with local spread. Filipe JA; Gibson GJ Bull Math Biol; 2001 Jul; 63(4):603-24. PubMed ID: 11497160 [TBL] [Abstract][Full Text] [Related]
13. [Development of a factual model for the dynamics of the transmission of infection by the human immunodeficiency virus: an example for animal epidemiology]. Le Pont F; Valleron AJ Rev Sci Tech; 1993 Mar; 12(1):73-82. PubMed ID: 8518448 [TBL] [Abstract][Full Text] [Related]
14. Branching process approach for epidemics in dynamic partnership network. Lashari AA; Trapman P J Math Biol; 2018 Jan; 76(1-2):265-294. PubMed ID: 28573467 [TBL] [Abstract][Full Text] [Related]
15. Network epidemic models with two levels of mixing. Ball F; Neal P Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521 [TBL] [Abstract][Full Text] [Related]
16. More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. Ferguson NM; Garnett GP Sex Transm Dis; 2000 Nov; 27(10):600-9. PubMed ID: 11099075 [TBL] [Abstract][Full Text] [Related]
17. Number of sexual encounters involving intercourse and the transmission of sexually transmitted infections. Nordvik MK; Liljeros F Sex Transm Dis; 2006 Jun; 33(6):342-9. PubMed ID: 16721329 [TBL] [Abstract][Full Text] [Related]
18. Novel bivariate moment-closure approximations. Krishnarajah I; Marion G; Gibson G Math Biosci; 2007 Aug; 208(2):621-43. PubMed ID: 17300816 [TBL] [Abstract][Full Text] [Related]