These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12424529)

  • 21. Relative prevalence of different sexually transmitted infections in HIV-discordant sexual partnerships: data from a risk network study in a high-risk New York neighbourhood.
    Friedman SR; Bolyard M; Sandoval M; Mateu-Gelabert P; Maslow C; Zenilman J
    Sex Transm Infect; 2008 Feb; 84(1):17-8. PubMed ID: 17728340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Host heterogeneity and disease endemicity: a moment-based approach.
    Dushoff J
    Theor Popul Biol; 1999 Dec; 56(3):325-35. PubMed ID: 10607525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pair approximation for lattice models with multiple interaction scales.
    Ellner SP
    J Theor Biol; 2001 Jun; 210(4):435-47. PubMed ID: 11403564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A derivative matching approach to moment closure for the stochastic logistic model.
    Singh A; Hespanha JP
    Bull Math Biol; 2007 Aug; 69(6):1909-25. PubMed ID: 17443391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deterministic epidemic models on contact networks: correlations and unbiological terms.
    Sharkey KJ
    Theor Popul Biol; 2011 Jun; 79(4):115-29. PubMed ID: 21354193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interval estimates for epidemic thresholds in two-sex network models.
    Handcock MS; Jones JH
    Theor Popul Biol; 2006 Sep; 70(2):125-34. PubMed ID: 16714041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis and simulation of a stochastic, discrete-individual model of STD transmission with partnership concurrency.
    Chick SE; Adams AL; Koopman JS
    Math Biosci; 2000 Jul; 166(1):45-68. PubMed ID: 10882799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster approximations for epidemic processes: a systematic description of correlations beyond the pair level.
    Petermann T; De Los Rios P
    J Theor Biol; 2004 Jul; 229(1):1-11. PubMed ID: 15178180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Weighting for sex acts to understand the spread of STI on networks.
    Moslonka-Lefebvre M; Bonhoeffer S; Alizon S
    J Theor Biol; 2012 Oct; 311():46-53. PubMed ID: 22766360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concurrency of partnerships, consistency with data, and control of sexually transmitted infections.
    Leng T; Keeling MJ
    Epidemics; 2018 Dec; 25():35-46. PubMed ID: 29798812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multilayer temporal network model for STD spreading accounting for permanent and casual partners.
    Vajdi A; Juher D; Saldaña J; Scoglio C
    Sci Rep; 2020 Mar; 10(1):3846. PubMed ID: 32123251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterosexual behavior patterns and the spread of HIV/AIDS: the interacting effects of rate of partner change and sexual mixing.
    Hertog S
    Sex Transm Dis; 2007 Oct; 34(10):820-8. PubMed ID: 17538515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multigroup model for a heterosexually transmitted disease.
    Edwards R; Kim S; van den Driessche P
    Math Biosci; 2010 Apr; 224(2):87-94. PubMed ID: 20043928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of self-referral for male patients with urethral discharge attending a sexually transmitted disease clinic in China.
    Shumin C; Zhongwei L; Bing L; Rongtao Z; Benqing S; Shengji Z
    Sex Transm Dis; 2004 Jan; 31(1):26-32. PubMed ID: 14695955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of immune response on transmission dynamics for sexually transmitted infections.
    Lena S; Pourbohloul B; Brunham RC
    J Infect Dis; 2005 Feb; 191 Suppl 1():S78-84. PubMed ID: 15627234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Moment closure approximations for stochastic kinetic models with rational rate laws.
    Milner P; Gillespie CS; Wilkinson DJ
    Math Biosci; 2011 Jun; 231(2):99-104. PubMed ID: 21338614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epidemic thresholds for bipartite networks.
    Hernández DG; Risau-Gusman S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052801. PubMed ID: 24329312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A moment closure method for stochastic reaction networks.
    Lee CH; Kim KH; Kim P
    J Chem Phys; 2009 Apr; 130(13):134107. PubMed ID: 19355717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of study population on the identification of risk factors for sexually transmitted diseases using a case-control design: the example of gonorrhea.
    Manhart LE; Aral SO; Holmes KK; Critchlow CW; Hughes JP; Whittington WL; Foxman B
    Am J Epidemiol; 2004 Aug; 160(4):393-402. PubMed ID: 15286025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.