BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12425058)

  • 21. Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs.
    Snyder DE; Meyer J; Zimmermann AG; Qiao M; Gissendanner SJ; Cruthers LR; Slone RL; Young DR
    Vet Parasitol; 2007 Dec; 150(4):345-51. PubMed ID: 17980490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of spinosad to beneficial insects and mites and its use in IPM.
    Miles M; Eelen H
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):275-84. PubMed ID: 17385494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling.
    Jin ZH; Xu B; Lin SZ; Jin QC; Cen PL
    Appl Biochem Biotechnol; 2009 Dec; 159(3):655-63. PubMed ID: 19132553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Side effects of plant protection products and biological interactions on the European earwig Forficula auricularia L.
    Peusens G; Moerkens R; Beliën T; Gobin B
    Commun Agric Appl Biol Sci; 2009; 74(2):411-7. PubMed ID: 20222599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande).
    Wan Y; Yuan G; He B; Xu B; Xie W; Wang S; Zhang Y; Wu Q; Zhou X
    Insect Biochem Mol Biol; 2018 Aug; 99():1-10. PubMed ID: 29753712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exposure to spinosad induces histopathological and cytotoxic effects on the salivary complex of the non-target predator Podisus nigrispinus.
    Santos-Junior VCD; Martínez LC; Plata-Rueda A; Bozdoğan H; Zanuncio JC; Serrão JE
    Chemosphere; 2019 Jun; 225():688-695. PubMed ID: 30903844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficacy of some plant oils alone and/or combined with different insecticides on the cotton leaf-worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt.
    Mesbah HA; Mourad AK; Rokaia AZ
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):305-28. PubMed ID: 17385497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of insecticide treatments on insect density and diversity in vegetable open fields.
    Colignon P; Hastir P; Gaspar C; Francis F
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):403-11. PubMed ID: 12425061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis.
    Bielza P
    Pest Manag Sci; 2008 Nov; 64(11):1131-8. PubMed ID: 18561150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties, toxicity and current applications of the biolarvicide spinosad.
    Santos VSV; Pereira BB
    J Toxicol Environ Health B Crit Rev; 2020; 23(1):13-26. PubMed ID: 31709913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bt sweet corn and selective insecticides: impacts on pests and predators.
    Musser FR; Shelton AM
    J Econ Entomol; 2003 Feb; 96(1):71-80. PubMed ID: 12650347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased efficacy and extended shelf life of spinosad formulated in phagostimulant granules against Spodoptera frugiperda.
    Tamez-Guerra P; Tamayo-Mejía F; Gomez-Flores R; Rodríguez-Padilla C; Damas G; Tamez-Guerra RS; Ek-Ramos MJ; Williams T
    Pest Manag Sci; 2018 Jan; 74(1):100-110. PubMed ID: 28664639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity of an essential oil derived from Chenopodium ambrosioides on greenhouse insect pests.
    Cloyd RA; Chiasson H
    J Econ Entomol; 2007 Apr; 100(2):459-66. PubMed ID: 17461071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uridine diphosphate glucosyltransferases are involved in spinosad resistance in western flower thrips Frankliniella occidentalis (Pergande).
    Wang J; Wan Y; Zhang Y; Yuan J; Zheng X; Cao H; Qian K; Feng J; Tang Y; Chen S; Zhang Y; Zhou X; Liang P; Wu Q
    J Hazard Mater; 2024 Mar; 466():133575. PubMed ID: 38280319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops.
    Wu G; Miyata T; Kang CY; Xie LH
    Pest Manag Sci; 2007 May; 63(5):500-10. PubMed ID: 17421051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entomopathogens as insecticides.
    Ignoffo CM
    Environ Lett; 1975; 8(1):23-40. PubMed ID: 1091480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Knockdown and mortality of adults of eight species of stored-product beetles exposed to four surfaces treated with spinosad.
    Toews MD; Subramanyam B; Rowan JM
    J Econ Entomol; 2003 Dec; 96(6):1967-73. PubMed ID: 14977140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolomics analysis of the effect of dissolved oxygen on spinosad production by Saccharopolyspora spinosa.
    Lu C; Yin J; Zhao F; Li F; Lu W
    Antonie Van Leeuwenhoek; 2017 May; 110(5):677-685. PubMed ID: 28154945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pesticides selectivity list to beneficial arthropods in four field vegetable crops.
    Hautier L; Jansen JP; Mabon N; Schiffers B
    Commun Agric Appl Biol Sci; 2007; 72(2):99-107. PubMed ID: 18399430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response.
    Gong Y; Xu B; Zhang Y; Gao X; Wu Q
    Ecotoxicology; 2015 Jul; 24(5):1141-51. PubMed ID: 25910608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.