These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12425354)

  • 1. Remediation of the Wells G & H Superfund Site, Woburn, Massachusetts.
    Bair ES; Metheny MA
    Ground Water; 2002; 40(6):657-68. PubMed ID: 12425354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.
    Braida WJ; Ong SK
    J Hazard Mater; 2001 Oct; 87(1-3):241-58. PubMed ID: 11566413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins.
    Gawel JE; Hemond HF
    Environ Pollut; 2004 Sep; 131(1):125-35. PubMed ID: 15210281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Results of the reactant sand-fracking pilot test and implications for the in situ remediation of chlorinated VOCs and metals in deep and fractured bedrock aquifers.
    Marcus DL; Bonds C
    J Hazard Mater; 1999 Aug; 68(1-2):125-53. PubMed ID: 10518668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process.
    Scott Alderman N; N'Guessan AL; Nyman MC
    J Hazard Mater; 2007 Jul; 146(3):652-60. PubMed ID: 17532559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a source apportionment model in consideration of volatile organic compounds in an urban stream.
    Asher WE; Luo W; Campo KW; Bender DA; Robinson KW; Zogorski JS; Pankow JF
    Environ Toxicol Chem; 2007 Aug; 26(8):1606-13. PubMed ID: 17702332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction.
    Lee JH; Woo HJ; Jeong KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site 5 air sparging pilot test, Naval Air Station Cecil Field, Jacksonville, Florida.
    Murray WA; Lunardini RC; Ullo FJ; Davidson ME
    J Hazard Mater; 2000 Feb; 72(2-3):121-45. PubMed ID: 10650187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States.
    Puckett LJ
    Water Sci Technol; 2004; 49(3):47-53. PubMed ID: 15053098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. By-products of a former phenol manufacturing site in a small lake adjacent to a Superfund site in the Aberjona watershed.
    Wick LY; Gschwend PM
    Environ Health Perspect; 1998 Aug; 106 Suppl 4(Suppl 4):1069-74. PubMed ID: 9703495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field vapor extraction test and long-term monitoring at a PCE contaminated site.
    Chai JC; Miura N
    J Hazard Mater; 2004 Jul; 110(1-3):85-92. PubMed ID: 15177729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.
    Schubert M; Schmidt A; Müller K; Weiss H
    J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.
    Mohamed AM; El-menshawy N; Saif AM
    J Environ Manage; 2007 May; 83(3):339-50. PubMed ID: 16844283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of residential wells to VOC and nitrate contamination.
    Aelion CM; Conte BC
    Environ Sci Technol; 2004 Mar; 38(6):1648-53. PubMed ID: 15074670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.
    Pleasant S; O'Donnell A; Powell J; Jain P; Townsend T
    Sci Total Environ; 2014 Jul; 485-486():31-40. PubMed ID: 24704954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.
    Juracek KE; Drake KD
    Environ Manage; 2016 Oct; 58(4):721-40. PubMed ID: 27357805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A case study for demonstrating the application of U.S. EPA's monitored natural attenuation screening protocol at a hazardous waste site.
    Clement TP; Truex MJ; Lee P
    J Contam Hydrol; 2002 Nov; 59(1-2):133-62. PubMed ID: 12683643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air sparging remediation of VOCs contaminated low-permeability soil based on pressure gradient control.
    Xu L; Zhu H; Zha F; Kang H; Fang L; Liu J; Tan X; Chu C
    Chemosphere; 2023 Oct; 339():139650. PubMed ID: 37495056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.