BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12426363)

  • 1. Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli.
    O'Donnell SM; Janssen GR
    J Bacteriol; 2002 Dec; 184(23):6730-3. PubMed ID: 12426363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of ribosomes and translation initiation factors from the gram-positive soil bacterium Streptomyces lividans.
    Day JM; Janssen GR
    J Bacteriol; 2004 Oct; 186(20):6864-75. PubMed ID: 15466040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs.
    Moll I; Hirokawa G; Kiel MC; Kaji A; Bläsi U
    Nucleic Acids Res; 2004; 32(11):3354-63. PubMed ID: 15215335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5' untranslated leader.
    O'Donnell SM; Janssen GR
    J Bacteriol; 2001 Feb; 183(4):1277-83. PubMed ID: 11157940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation.
    Duval M; Korepanov A; Fuchsbauer O; Fechter P; Haller A; Fabbretti A; Choulier L; Micura R; Klaholz BP; Romby P; Springer M; Marzi S
    PLoS Biol; 2013 Dec; 11(12):e1001731. PubMed ID: 24339747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Dedicated Ribosomes Translate a Leaderless mRNA.
    Acosta-Reyes FJ; Bhattacharjee S; Gottesman M; Frank J
    J Mol Biol; 2024 Feb; 436(4):168423. PubMed ID: 38185325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of programmed and spontaneous ribosome sliding along the mRNA.
    Senyushkina T; Samatova E; Klimova M; Rodnina MV
    Nucleic Acids Res; 2024 Jun; 52(11):6507-6517. PubMed ID: 38783118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Back to translation: removal of aIF2 from the 5'-end of mRNAs by translation recovery factor in the crenarchaeon Sulfolobus solfataricus.
    Märtens B; Manoharadas S; Hasenöhrl D; Zeichen L; Bläsi U
    Nucleic Acids Res; 2014 Feb; 42(4):2505-11. PubMed ID: 24271401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Universally Conserved ATPase YchF Regulates Translation of Leaderless mRNA in Response to Stress Conditions.
    Landwehr V; Milanov M; Angebauer L; Hong J; Jüngert G; Hiersemenzel A; Siebler A; Schmit F; Öztürk Y; Dannenmaier S; Drepper F; Warscheid B; Koch HG
    Front Mol Biosci; 2021; 8():643696. PubMed ID: 34026826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into translation initiation of the
    Acosta-Reyes FJ; Bhattacharjee S; Gottesman M; Frank J
    bioRxiv; 2023 Oct; ():. PubMed ID: 37693525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycysteine-encoding leaderless short ORFs function as cysteine-responsive attenuators of operonic gene expression in mycobacteria.
    Canestrari JG; Lasek-Nesselquist E; Upadhyay A; Rofaeil M; Champion MM; Wade JT; Derbyshire KM; Gray TA
    Mol Microbiol; 2020 Jul; 114(1):93-108. PubMed ID: 32181921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli.
    Müller C; Sokol L; Vesper O; Sauert M; Moll I
    Antibiotics (Basel); 2016 Jun; 5(2):. PubMed ID: 27258317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of Spatial Positioning of Ribosomes around Chromosome in
    Wasim A; Bera P; Mondal J
    J Phys Chem B; 2024 Apr; 128(14):3368-3382. PubMed ID: 38560890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mistakes in translation don't translate into termination.
    Hughes RA; Ellington AD
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1273-4. PubMed ID: 15677335
    [No Abstract]   [Full Text] [Related]  

  • 15. The origins of time-delay in template biopolymerization processes.
    Mier-y-Terán-Romero L; Silber M; Hatzimanikatis V
    PLoS Comput Biol; 2010 Apr; 6(4):e1000726. PubMed ID: 20369012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome Abundance Control in Prokaryotes.
    Shea J; Davis L; Quaye B; Gedeon T
    Bull Math Biol; 2023 Oct; 85(12):119. PubMed ID: 37861893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging spatiotemporal translation regulation in vivo.
    Blake LA; De La Cruz A; Wu B
    Semin Cell Dev Biol; 2024 Feb; 154(Pt B):155-164. PubMed ID: 36963991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tagging insulin mRNA for translation.
    Nat Struct Mol Biol; 2023 Sep; 30(9):1258-1259. PubMed ID: 37537335
    [No Abstract]   [Full Text] [Related]  

  • 19. RNA repeats stall translation.
    Zhu Z; Yang P
    Nat Chem Biol; 2023 Nov; 19(11):1299-1300. PubMed ID: 37592156
    [No Abstract]   [Full Text] [Related]  

  • 20. Translation initiation of leaderless and polycistronic transcripts in mammalian mitochondria.
    Remes C; Khawaja A; Pearce SF; Dinan AM; Gopalakrishna S; Cipullo M; Kyriakidis V; Zhang J; Dopico XC; Yukhnovets O; Atanassov I; Firth AE; Cooperman B; Rorbach J
    Nucleic Acids Res; 2023 Jan; 51(2):891-907. PubMed ID: 36629253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.