BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 12426388)

  • 1. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response.
    Zinke I; Schütz CS; Katzenberger JD; Bauer M; Pankratz MJ
    EMBO J; 2002 Nov; 21(22):6162-73. PubMed ID: 12426388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of hunger-driven gene expression in the Drosophila melanogaster larval central nervous system.
    Ryuda M; Shimada K; Koyanagi R; Azumi K; Tanimura T; Hayakawa Y
    Zoolog Sci; 2008 Jul; 25(7):746-52. PubMed ID: 18828662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila.
    Thimgan MS; Seugnet L; Turk J; Shaw PJ
    Sleep; 2015 May; 38(5):801-14. PubMed ID: 25409104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starvation-induced elevation of taste responsiveness and expression of a sugar taste receptor gene in Drosophila melanogaster.
    Nishimura A; Ishida Y; Takahashi A; Okamoto H; Sakabe M; Itoh M; Takano-Shimizu T; Ozaki M
    J Neurogenet; 2012 Jun; 26(2):206-15. PubMed ID: 22794108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic analysis of COP9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression.
    Oron E; Tuller T; Li L; Rozovsky N; Yekutieli D; Rencus-Lazar S; Segal D; Chor B; Edgar BA; Chamovitz DA
    Mol Syst Biol; 2007; 3():108. PubMed ID: 17486136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis.
    Beckstead RB; Lam G; Thummel CS
    Genome Biol; 2005; 6(12):R99. PubMed ID: 16356271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut.
    Li HM; Sun L; Mittapalli O; Muir WM; Xie J; Wu J; Schemerhorn BJ; Sun W; Pittendrigh BR; Murdock LL
    Insect Mol Biol; 2009 Feb; 18(1):21-31. PubMed ID: 19196346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila.
    Erdi B; Nagy P; Zvara A; Varga A; Pircs K; Ménesi D; Puskás LG; Juhász G
    Autophagy; 2012 Jul; 8(7):1124-35. PubMed ID: 22562043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Drosophila FOXO regulates growth and can phenocopy starvation.
    Kramer JM; Davidge JT; Lockyer JM; Staveley BE
    BMC Dev Biol; 2003 Jul; 3():5. PubMed ID: 12844367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.
    Stergiopoulos K; Cabrero P; Davies SA; Dow JA
    Physiol Genomics; 2009 Mar; 37(1):1-11. PubMed ID: 19018044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional network controlled by the trithorax-group gene ash2 in Drosophila melanogaster.
    Beltran S; Blanco E; Serras F; Pérez-Villamil B; Guigó R; Artavanis-Tsakonas S; Corominas M
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3293-8. PubMed ID: 12626737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray analyses reveal distinct roles for Rel proteins in the Drosophila immune response.
    Pal S; Wu J; Wu LP
    Dev Comp Immunol; 2008; 32(1):50-60. PubMed ID: 17537510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc.
    Yepiskoposyan H; Egli D; Fergestad T; Selvaraj A; Treiber C; Multhaup G; Georgiev O; Schaffner W
    Nucleic Acids Res; 2006; 34(17):4866-77. PubMed ID: 16973896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A major bristle QTL from a selected population of Drosophila uncovers the zinc-finger transcription factor poils-au-dos, a repressor of achaete-scute.
    Gibert JM; Marcellini S; David JR; Schlötterer C; Simpson P
    Dev Biol; 2005 Dec; 288(1):194-205. PubMed ID: 16216235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population.
    Ng'oma E; Williams-Simon PA; Rahman A; King EG
    BMC Genomics; 2020 Jan; 21(1):84. PubMed ID: 31992183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila.
    Musselman LP; Fink JL; Narzinski K; Ramachandran PV; Hathiramani SS; Cagan RL; Baranski TJ
    Dis Model Mech; 2011 Nov; 4(6):842-9. PubMed ID: 21719444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lithium chloride on the gene expression profiles in Drosophila heads.
    Kasuya J; Kaas G; Kitamoto T
    Neurosci Res; 2009 Aug; 64(4):413-20. PubMed ID: 19410610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae.
    Wang H; Lai D; Yuan M; Xu H
    Electrophoresis; 2014 Apr; 35(8):1122-9. PubMed ID: 24458307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut.
    Park JH; Chen J; Jang S; Ahn TJ; Kang K; Choi MS; Kwon JY
    FEBS Lett; 2016 Feb; 590(4):493-500. PubMed ID: 26801353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The UBX-regulated network in the haltere imaginal disc of D. melanogaster.
    Hersh BM; Nelson CE; Stoll SJ; Norton JE; Albert TJ; Carroll SB
    Dev Biol; 2007 Feb; 302(2):717-27. PubMed ID: 17174297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.