These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12427469)

  • 21. Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes.
    Athanassiou CG; Kavallieratos NG; Menti H; Karanastasi E
    J Econ Entomol; 2010 Jun; 103(3):977-84. PubMed ID: 20568646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Susceptibility of the peachtree borer, Synanthedon exitiosa, to Steinernema carpocapsae and Steinernema riobrave in laboratory and field trials.
    Cottrell TE; Shapiro-Ilan DI
    J Invertebr Pathol; 2006 Jun; 92(2):85-8. PubMed ID: 16707138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of two entomopathogenic nematodes for suppression of plum curculio (Conotrachelus nenuphar, Coleoptera: Curculionidae) life stages in northern climates.
    Kim HG; Alston DG
    Environ Entomol; 2008 Oct; 37(5):1272-9. PubMed ID: 19036207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects.
    Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S
    J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of humidity on the effect of Steinernema feltiae against diapausing codling moth larvae (Cydia pomonella L.) (Lepidoptera: Tortricidae).
    Navaneethan T; Strauch O; Ehlers RU
    Commun Agric Appl Biol Sci; 2010; 75(3):265-71. PubMed ID: 21539244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae.
    Kryukova NA; Dubovskiy IM; Chertkova EA; Vorontsova YL; Slepneva IA; Glupov VV
    J Insect Physiol; 2011 Jun; 57(6):796-800. PubMed ID: 21419772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae).
    Lacey LA; Unruh TR; Headrick HL
    J Invertebr Pathol; 2003 Jul; 83(3):230-9. PubMed ID: 12877830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficacy of entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) as influenced by Frankliniella occidentalis (Thysanoptera: Thripidae) developmental stage and host plant stage.
    Buitenhuis R; Shipp JL
    J Econ Entomol; 2005 Oct; 98(5):1480-5. PubMed ID: 16334313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression.
    Liu H; Zeng H; Yao Q; Yuan J; Zhang Y; Qiu D; Yang X; Yang H; Liu Z
    Mol Biochem Parasitol; 2012 Oct; 185(2):89-98. PubMed ID: 22750626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria.
    Gouge DH; Snyder JL
    J Invertebr Pathol; 2006 Mar; 91(3):147-57. PubMed ID: 16448667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the biocontrol potential of Steinernema feltiae against Delia radicum through dosage, application technique and timing.
    Beck B; Spanoghe P; Moens M; Brusselman E; Temmerman F; Pollet S; Nuyttens D
    Pest Manag Sci; 2014 May; 70(5):841-51. PubMed ID: 23943630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of insect larvae and seedling roots on the host-finding ability of Steinernema feltiae (Nematoda: Steinernematidae).
    Hui E; Webster JM
    J Invertebr Pathol; 2000 Feb; 75(2):152-62. PubMed ID: 10772328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facultative scavenging as a survival strategy of entomopathogenic nematodes.
    San-Blas E; Gowen SR
    Int J Parasitol; 2008 Jan; 38(1):85-91. PubMed ID: 17662985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control.
    Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Campos-Herrera R
    J Invertebr Pathol; 2018 May; 154():85-94. PubMed ID: 29634923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host.
    Gruner DS; Ram K; Strong DR
    J Invertebr Pathol; 2007 Jan; 94(1):12-9. PubMed ID: 17005194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells.
    Brivio MF; Mastore M; Nappi AJ
    Dev Comp Immunol; 2010 Sep; 34(9):991-8. PubMed ID: 20457179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entomopathogenic nematodes in insect cadaver formulations for the control of Rhipicephalus microplus (Acari: Ixodidae).
    Monteiro CM; Matos Rda S; Araújo LX; Campos R; Bittencourt VR; Dolinski C; Furlong J; Prata MC
    Vet Parasitol; 2014 Jul; 203(3-4):310-7. PubMed ID: 24836639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis.
    Ruiu L; Marche MG; Mura ME; Tarasco E
    Pest Manag Sci; 2022 Dec; 78(12):5437-5443. PubMed ID: 36057860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Down-regulation of antibacterial peptide synthesis in an insect model induced by the body-surface of an entomoparasite (Steinernema feltiae).
    F Brivio M; Moro M; Mastore M
    Dev Comp Immunol; 2006; 30(7):627-38. PubMed ID: 16368138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovienii, and the bacto-helminthic complex to larvae of Tipula oleracea (Diptera) and Galleria mellonella (Lepidoptera).
    Ehlers RU; Wulff A; Peters A
    J Invertebr Pathol; 1997 May; 69(3):212-7. PubMed ID: 9170346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.