These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

784 related articles for article (PubMed ID: 12427744)

  • 1. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity.
    Shinkawa T; Nakamura K; Yamane N; Shoji-Hosaka E; Kanda Y; Sakurada M; Uchida K; Anazawa H; Satoh M; Yamasaki M; Hanai N; Shitara K
    J Biol Chem; 2003 Jan; 278(5):3466-73. PubMed ID: 12427744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC.
    Kanda Y; Yamane-Ohnuki N; Sakai N; Yamano K; Nakano R; Inoue M; Misaka H; Iida S; Wakitani M; Konno Y; Yano K; Shitara K; Hosoi S; Satoh M
    Biotechnol Bioeng; 2006 Jul; 94(4):680-8. PubMed ID: 16609957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
    Yamane-Ohnuki N; Kinoshita S; Inoue-Urakubo M; Kusunoki M; Iida S; Nakano R; Wakitani M; Niwa R; Sakurada M; Uchida K; Shitara K; Satoh M
    Biotechnol Bioeng; 2004 Sep; 87(5):614-22. PubMed ID: 15352059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides.
    Niwa R; Natsume A; Uehara A; Wakitani M; Iida S; Uchida K; Satoh M; Shitara K
    J Immunol Methods; 2005 Nov; 306(1-2):151-60. PubMed ID: 16219319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII.
    Davies J; Jiang L; Pan LZ; LaBarre MJ; Anderson D; Reff M
    Biotechnol Bioeng; 2001 Aug; 74(4):288-94. PubMed ID: 11410853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded antibody comprising a single-chain antibody linked the antibody constant region.
    Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K
    J Immunol Methods; 2005 Nov; 306(1-2):93-103. PubMed ID: 16236307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa.
    Iida S; Misaka H; Inoue M; Shibata M; Nakano R; Yamane-Ohnuki N; Wakitani M; Yano K; Shitara K; Satoh M
    Clin Cancer Res; 2006 May; 12(9):2879-87. PubMed ID: 16675584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of distinct fucosylated oligosaccharides and carbohydrate-mediated adhesion efficiency directed by two different alpha-1,3-fucosyltransferases. Comparison of E- and L-selectin-mediated adhesion.
    Sueyoshi S; Tsuboi S; Sawada-Hirai R; Dang UN; Lowe JB; Fukuda M
    J Biol Chem; 1994 Dec; 269(51):32342-50. PubMed ID: 7528213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood.
    Iida S; Kuni-Kamochi R; Mori K; Misaka H; Inoue M; Okazaki A; Shitara K; Satoh M
    BMC Cancer; 2009 Feb; 9():58. PubMed ID: 19226457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Potelligent antibodies as next generation therapeutic antibodies].
    Shitara K
    Yakugaku Zasshi; 2009 Jan; 129(1):3-9. PubMed ID: 19122430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma.
    Niwa R; Shoji-Hosaka E; Sakurada M; Shinkawa T; Uchida K; Nakamura K; Matsushima K; Ueda R; Hanai N; Shitara K
    Cancer Res; 2004 Mar; 64(6):2127-33. PubMed ID: 15026353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines.
    Mimura Y; Kelly RM; Unwin L; Albrecht S; Jefferis R; Goodall M; Mizukami Y; Mimura-Kimura Y; Matsumoto T; Ueoka H; Rudd PM
    J Immunol Methods; 2016 Jan; 428():30-6. PubMed ID: 26627984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chromatographic approach for elevating the antibody-dependent cellular cytotoxicity of antibody composites.
    Tojo S; Okazaki A; Wakitani M; Shinkawa T; Uchida K; Suzawa T
    Biol Pharm Bull; 2009 Sep; 32(9):1604-8. PubMed ID: 19721240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variant human IgG1-Fc mediates improved ADCC.
    Stewart R; Thom G; Levens M; Güler-Gane G; Holgate R; Rudd PM; Webster C; Jermutus L; Lund J
    Protein Eng Des Sel; 2011 Sep; 24(9):671-8. PubMed ID: 21596686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation.
    Gong Q; Hazen M; Marshall B; Crowell SR; Ou Q; Wong AW; Phung W; Vernes JM; Meng YG; Tejada M; Andersen D; Kelley RF
    MAbs; 2016; 8(6):1098-106. PubMed ID: 27216702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density.
    Niwa R; Sakurada M; Kobayashi Y; Uehara A; Matsushima K; Ueda R; Nakamura K; Shitara K
    Clin Cancer Res; 2005 Mar; 11(6):2327-36. PubMed ID: 15788684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin.
    Yamashita K; Kochibe N; Ohkura T; Ueda I; Kobata A
    J Biol Chem; 1985 Apr; 260(8):4688-93. PubMed ID: 3988732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation.
    Shibata-Koyama M; Iida S; Okazaki A; Mori K; Kitajima-Miyama K; Saitou S; Kakita S; Kanda Y; Shitara K; Kato K; Satoh M
    Glycobiology; 2009 Feb; 19(2):126-34. PubMed ID: 18952826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC.
    Imai-Nishiya H; Mori K; Inoue M; Wakitani M; Iida S; Shitara K; Satoh M
    BMC Biotechnol; 2007 Nov; 7():84. PubMed ID: 18047682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.