These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 124278)

  • 1. Action of Buytricin 7423 on Clostridium pasteurianum: changes in intracellular adenosine triphosphate concentration.
    Clarke DJ; Morris JG
    Biochem Soc Trans; 1975; 3(3):389-91. PubMed ID: 124278
    [No Abstract]   [Full Text] [Related]  

  • 2. Butyricin 7423 and the membrane H+ -ATPase of Clostridium pasteurianum.
    Clarke DJ; Kell DB; Morley CD; Morris JG
    Arch Microbiol; 1982 Feb; 131(1):81-6. PubMed ID: 6461308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial purification of a dicyclohexylcarbodi-imide-sensitive membrane adenosine triphosphatase complex from the obligately anaerobic bacterium Clostridium Pasteurianum.
    Clarke DJ; Morris JG
    Biochem J; 1976 Mar; 154(3):725-9. PubMed ID: 133672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mode of action of the bacteriocin butyricin 7423. Effects on membrane potential and potassium-ion accumulation in Clostridium pasteurianum.
    Clarke DJ; Morley CD; Kell DB; Morris JG
    Eur J Biochem; 1982 Sep; 127(1):105-16. PubMed ID: 6216104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butyricin 7423: a bacteriocin produced by Clostridium butyricum NCIB7423.
    Clarke DJ; Morris JG
    J Gen Microbiol; 1976 Jul; 95(1):67-77. PubMed ID: 956780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative phosphorylation in bacteria: a genetic approach.
    Gutnick DL; Fragman D
    Horiz Biochem Biophys; 1977; 3():192-223. PubMed ID: 142062
    [No Abstract]   [Full Text] [Related]  

  • 7. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 2. ATP synthetase activity.
    Clarke DJ; Morris JG
    Eur J Biochem; 1979 Aug; 98(2):613-20. PubMed ID: 39759
    [No Abstract]   [Full Text] [Related]  

  • 8. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles.
    Yoshida M; Sone N; Hirata H; Kagawa Y
    Biochem Biophys Res Commun; 1975 Dec; 67(4):1295-300. PubMed ID: 1031
    [No Abstract]   [Full Text] [Related]  

  • 9. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum.
    Riebeling V; Thauer RK; Jungermann K
    Eur J Biochem; 1975 Jul; 55(2):445-53. PubMed ID: 237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An energy-dependent hydrogen-evolution from dithionite in nitrogen-fixing extracts of Clostridium pasteurianum.
    Hardy RW; Knight E; D'Eustachio AJ
    Biochem Biophys Res Commun; 1965 Sep; 20(5):539-44. PubMed ID: 4221985
    [No Abstract]   [Full Text] [Related]  

  • 11. Adenosine triphosphatase activity of Ureaplasma urealyticum.
    Romano N; Tolone G; La Licata R
    Microbiologica; 1982 Jan; 5(1):25-33. PubMed ID: 6287175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the membrane-bound adenosine triphosphatase of Escherichia coli by dicyclohexylcarbodi-imide.
    Feinstein DL; Fisher RJ
    Biochem J; 1977 Nov; 167(2):497-9. PubMed ID: 145861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178
    [No Abstract]   [Full Text] [Related]  

  • 14. ATP-driven, electrogenic proton translocation in plasma membrane vesicles from turtle bladder cells.
    Youmans SJ; Worman HJ; Brodsky WA
    Prog Clin Biol Res; 1983; 126():159-71. PubMed ID: 6136986
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae.
    Dharmavaram RM; Konisky J
    J Bacteriol; 1987 Sep; 169(9):3921-5. PubMed ID: 2957358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net ATP synthesis in H+ -atpase macroliposomes by an external electric field.
    Rögner M; Ohno K; Hamamoto T; Sone N; Kagawa Y
    Biochem Biophys Res Commun; 1979 Nov; 91(1):362-7. PubMed ID: 42395
    [No Abstract]   [Full Text] [Related]  

  • 18. The sodium pump.
    Glynn IM; Karlish SJ
    Annu Rev Physiol; 1975; 37():13-55. PubMed ID: 123724
    [No Abstract]   [Full Text] [Related]  

  • 19. Primary and secondary transport of cations in bacteria.
    Harold FM; Kakinuma Y
    Ann N Y Acad Sci; 1985; 456():375-83. PubMed ID: 2418733
    [No Abstract]   [Full Text] [Related]  

  • 20. Purification and characterization of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase complex from membranes of Escherichia coli.
    Hare JF
    Biochem Biophys Res Commun; 1975 Oct; 66(4):1329-37. PubMed ID: 127583
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.