BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 12428018)

  • 1. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases.
    Gang DR; Beuerle T; Ullmann P; Werck-Reichhart D; Pichersky E
    Plant Physiol; 2002 Nov; 130(3):1536-44. PubMed ID: 12428018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a sweet basil acyltransferase involved in eugenol biosynthesis.
    Dhar N; Sarangapani S; Reddy VA; Kumar N; Panicker D; Jin J; Chua NH; Sarojam R
    J Exp Bot; 2020 Jun; 71(12):3638-3652. PubMed ID: 32198522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil.
    Gang DR; Wang J; Dudareva N; Nam KH; Simon JE; Lewinsohn E; Pichersky E
    Plant Physiol; 2001 Feb; 125(2):539-55. PubMed ID: 11161012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family.
    Gang DR; Lavid N; Zubieta C; Chen F; Beuerle T; Lewinsohn E; Noel JP; Pichersky E
    Plant Cell; 2002 Feb; 14(2):505-19. PubMed ID: 11884690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red clover coumarate 3'-hydroxylase (CYP98A44) is capable of hydroxylating p-coumaroyl-shikimate but not p-coumaroyl-malate: implications for the biosynthesis of phaselic acid.
    Sullivan ML; Zarnowski R
    Planta; 2010 Jan; 231(2):319-28. PubMed ID: 19921248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.).
    Deschamps C; Simon JE
    Methods Mol Biol; 2010; 643():263-73. PubMed ID: 20552457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sweet Basil Has Distinct Synthases for Eugenol Biosynthesis in Glandular Trichomes and Roots with Different Regulatory Mechanisms.
    Reddy VA; Li C; Nadimuthu K; Tjhang JG; Jang IC; Rajani S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of rosmarinic acid biosynthesis.
    Petersen M; Abdullah Y; Benner J; Eberle D; Gehlen K; Hücherig S; Janiak V; Kim KH; Sander M; Weitzel C; Wolters S
    Phytochemistry; 2009; 70(15-16):1663-79. PubMed ID: 19560175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.).
    Kim HJ; Chen F; Wang X; Rajapakse NC
    J Agric Food Chem; 2006 Mar; 54(6):2327-32. PubMed ID: 16536615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (
    Kwon DY; Kim YB; Kim JK; Park SU
    Prep Biochem Biotechnol; 2021; 51(1):35-43. PubMed ID: 32687005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast.
    Nair RB; Xia Q; Kartha CJ; Kurylo E; Hirji RN; Datla R; Selvaraj G
    Plant Physiol; 2002 Sep; 130(1):210-20. PubMed ID: 12226501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.
    Lin CY; Wang JP; Li Q; Chen HC; Liu J; Loziuk P; Song J; Williams C; Muddiman DC; Sederoff RR; Chiang VL
    Mol Plant; 2015 Jan; 8(1):176-87. PubMed ID: 25578281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxycinnamoyltransferase and CYP98 in phenolic metabolism in the rosmarinic acid-producing hornwort Anthoceros agrestis.
    Ernst L; Wohl J; Bauerbach E; Petersen M
    Planta; 2022 Mar; 255(4):75. PubMed ID: 35235057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth.
    Abdulrazzak N; Pollet B; Ehlting J; Larsen K; Asnaghi C; Ronseau S; Proux C; Erhardt M; Seltzer V; Renou JP; Ullmann P; Pauly M; Lapierre C; Werck-Reichhart D
    Plant Physiol; 2006 Jan; 140(1):30-48. PubMed ID: 16377748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase.
    Berim A; Park JJ; Gang DR
    Plant J; 2014 Nov; 80(3):385-95. PubMed ID: 25139498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway.
    Schoch G; Goepfert S; Morant M; Hehn A; Meyer D; Ullmann P; Werck-Reichhart D
    J Biol Chem; 2001 Sep; 276(39):36566-74. PubMed ID: 11429408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil.
    Battini F; Bernardi R; Turrini A; Agnolucci M; Giovannetti M
    Mycorrhiza; 2016 Oct; 26(7):699-707. PubMed ID: 27179537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4'-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis.
    Matsuno M; Nagatsu A; Ogihara Y; Ellis BE; Mizukami H
    FEBS Lett; 2002 Mar; 514(2-3):219-24. PubMed ID: 11943155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes.
    Xie Z; Kapteyn J; Gang DR
    Plant J; 2008 May; 54(3):349-61. PubMed ID: 18248593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil (
    Kivimäenpä M; Mofikoya A; Abd El-Raheem AM; Riikonen J; Julkunen-Tiitto R; Holopainen JK
    J Agric Food Chem; 2022 Oct; 70(39):12287-12296. PubMed ID: 36126343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.