These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 12428157)
1. Leaching of arsenic, chromium, and copper in a contaminated soil at a wood preserving site. Jang YC; Townsend TG; Ward M; Bitton G Bull Environ Contam Toxicol; 2002 Dec; 69(6):808-16. PubMed ID: 12428157 [No Abstract] [Full Text] [Related]
2. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea. Kim H; Kim DJ; Koo JH; Park JG; Jang YC Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945 [TBL] [Abstract][Full Text] [Related]
4. Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood. Lebow S; Foster D; Evans J Bull Environ Contam Toxicol; 2004 Feb; 72(2):225-32. PubMed ID: 15106755 [No Abstract] [Full Text] [Related]
5. Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand. Robinson B; Greven M; Green S; Sivakumaran S; Davidson P; Clothier B Sci Total Environ; 2006 Jul; 364(1-3):113-23. PubMed ID: 16150477 [TBL] [Abstract][Full Text] [Related]
6. Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review. Katz SA; Salem H J Appl Toxicol; 2005; 25(1):1-7. PubMed ID: 15669035 [TBL] [Abstract][Full Text] [Related]
7. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti. Chou S; Colman J; Tylenda C; De Rosa C Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380 [TBL] [Abstract][Full Text] [Related]
8. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site. Hopp L; Peiffer S; Durner W J Contam Hydrol; 2006 May; 85(3-4):159-78. PubMed ID: 16530293 [TBL] [Abstract][Full Text] [Related]
9. Leaching of arsenic, copper and chromium from thermally treated soil. Kumpiene J; Nordmark D; Hamberg R; Carabante I; Simanavičienė R; Aksamitauskas VČ J Environ Manage; 2016 Dec; 183(Pt 3):460-466. PubMed ID: 27612616 [TBL] [Abstract][Full Text] [Related]
10. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil. Nordmark D; Kumpiene J; Andreas L; Lagerkvist A Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937 [TBL] [Abstract][Full Text] [Related]
11. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Nielsen SS; Petersen LR; Kjeldsen P; Jakobsen R Chemosphere; 2011 Jul; 84(4):383-9. PubMed ID: 21529888 [TBL] [Abstract][Full Text] [Related]
12. Effect of simulated rainfall and weathering on release of preservative elements from CCA treated wood. Lebow S; Williams RS; Lebow P Environ Sci Technol; 2003 Sep; 37(18):4077-82. PubMed ID: 14524438 [TBL] [Abstract][Full Text] [Related]
13. Copper, chromium, and arsenic levels in soil near highway traffic sound barriers built using CCA pressure-treated wood. Stilwell DE; Graetz TJ Bull Environ Contam Toxicol; 2001 Aug; 67(2):303-8. PubMed ID: 11429691 [No Abstract] [Full Text] [Related]
14. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Kumpiene J; Castillo Montesinos I; Lagerkvist A; Maurice C Chemosphere; 2007 Feb; 67(2):410-7. PubMed ID: 17166546 [TBL] [Abstract][Full Text] [Related]
15. Contamination of soil with copper, chromium, and arsenic under decks built from pressure treated wood. Stilwell DE; Gorny KD Bull Environ Contam Toxicol; 1997 Jan; 58(1):22-9. PubMed ID: 8952921 [No Abstract] [Full Text] [Related]
16. Mobility of copper, chromium and arsenic from treated timber into grapevines. Ko BG; Vogeler I; Bolan NS; Clothier B; Green S; Kennedy J Sci Total Environ; 2007 Dec; 388(1-3):35-42. PubMed ID: 17889258 [TBL] [Abstract][Full Text] [Related]
17. Designing a purification process for chromium-, copper- and arsenic-contaminated wood. Kakitani T; Hata T; Kajimoto T; Imamura Y Waste Manag; 2006; 26(5):453-8. PubMed ID: 16084713 [TBL] [Abstract][Full Text] [Related]
18. Dislodgeable copper, chromium and arsenic from CCA-treated wood surfaces. Stilwell D; Toner M; Sawhney B Sci Total Environ; 2003 Aug; 312(1-3):123-31. PubMed ID: 12873405 [TBL] [Abstract][Full Text] [Related]
19. A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure. Shibata T; Solo-Gabriele HM; Fleming LE; Cai Y; Townsend TG Sci Total Environ; 2007 Jan; 372(2-3):624-35. PubMed ID: 17161449 [TBL] [Abstract][Full Text] [Related]
20. Arsenic chemical species-dependent genotoxic potential in water extracts from two CCA-contaminated soils measured by DNA-repair deficient CHO-cells. Ragnvaldsson D; Lättström A; Tesfalidet S; Lövgren L; Tysklind M; Leffler P Sci Total Environ; 2009 Jul; 407(14):4253-60. PubMed ID: 19361837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]