BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12428965)

  • 1. Nuclear magnetic resonance spectroscopic study of beta-lactoglobulin interactions with two flavor compounds, gamma-decalactone and beta-ionone.
    Lübke M; Guichard E; Tromelin A; Le Quéré JL
    J Agric Food Chem; 2002 Nov; 50(24):7094-9. PubMed ID: 12428965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of binding behavior of alpha- and beta-ionones to beta-lactoglobulin at different pH values using a diffusion-based NOE pumping technique.
    Jung DM; Ebeler SE
    J Agric Food Chem; 2003 Mar; 51(7):1988-93. PubMed ID: 12643663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR studies of retinoid-protein interactions: the conformation of [13C]-beta-ionones bound to beta-lactoglobulin B.
    Curley RW; Sundaram AK; Fowble JW; Abildgaard F; Westler WM; Markley JL
    Pharm Res; 1999 May; 16(5):651-9. PubMed ID: 10350006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of apparent binding constants for aroma compounds with beta-lactoglobulin by dynamic coupled column liquid chromatography.
    Jouenne E; Crouzet J
    J Agric Food Chem; 2000 Nov; 48(11):5396-400. PubMed ID: 11087491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between beta-lactoglobulin and aroma compounds: different binding behaviors as a function of ligand structure.
    Tavel L; Andriot I; Moreau C; Guichard E
    J Agric Food Chem; 2008 Nov; 56(21):10208-17. PubMed ID: 18928299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin.
    Ma B; You X; Lu F
    Int J Biol Macromol; 2014 Mar; 64():162-7. PubMed ID: 24325860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of catalyst in a 3D-QSAR study of the interactions between flavor compounds and beta-lactoglobulin.
    Tromelin A; Guichard E
    J Agric Food Chem; 2003 Mar; 51(7):1977-83. PubMed ID: 12643661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partially folded structure of monomeric bovine beta-lactoglobulin.
    Molinari H; Ragona L; Varani L; Musco G; Consonni R; Zetta L; Monaco HL
    FEBS Lett; 1996 Mar; 381(3):237-43. PubMed ID: 8601463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane fluidity response to odorants as seen by 2H-NMR and infrared spectroscopy.
    Bouchard M; Boudreau N; Auger M
    Biochim Biophys Acta; 1996 Jul; 1282(2):233-9. PubMed ID: 8703978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EF loop conformational change triggers ligand binding in beta-lactoglobulins.
    Ragona L; Fogolari F; Catalano M; Ugolini R; Zetta L; Molinari H
    J Biol Chem; 2003 Oct; 278(40):38840-6. PubMed ID: 12857741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aroma compounds-proteins interaction using headspace techniques.
    Jouenne E; Crouzet J
    Adv Exp Med Biol; 2001; 488():33-41. PubMed ID: 11548158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of beta-lactoglobulin with small hydrophobic ligands as monitored by fluorometry and equilibrium dialysis: nonlinear quenching effects related to protein--protein association.
    Muresan S; van der Bent A; de Wolf FA
    J Agric Food Chem; 2001 May; 49(5):2609-18. PubMed ID: 11368643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance.
    Tuzi S; Yamaguchi S; Naito A; Needleman R; Lanyi JK; Saitô H
    Biochemistry; 1996 Jun; 35(23):7520-7. PubMed ID: 8652531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies.
    Taulier N; Chalikian TV
    J Mol Biol; 2001 Dec; 314(4):873-89. PubMed ID: 11734004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molten globule structure of equine beta-lactoglobulin probed by hydrogen exchange.
    Kobayashi T; Ikeguchi M; Sugai S
    J Mol Biol; 2000 Jun; 299(3):757-70. PubMed ID: 10835282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding and refolding of bovine beta-lactoglobulin monitored by hydrogen exchange measurements.
    Ragona L; Fogolari F; Romagnoli S; Zetta L; Maubois JL; Molinari H
    J Mol Biol; 1999 Nov; 293(4):953-69. PubMed ID: 10543977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two modes of fatty acid binding to bovine β-lactoglobulin--crystallographic and spectroscopic studies.
    Loch J; Polit A; Górecki A; Bonarek P; Kurpiewska K; Dziedzicka-Wasylewska M; Lewiński K
    J Mol Recognit; 2011; 24(2):341-9. PubMed ID: 21360616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into protein recognition for γ-lactone essences and the effect of side chains on interaction via microscopic, spectroscopic, and simulative technologies.
    Sun Q; Gan N; Zhang S; Zhao L; Tang P; Pu H; Zhai Y; Gan R; Li H
    Food Chem; 2019 Apr; 278():127-135. PubMed ID: 30583353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydration, lipids, and temperature on the binding of the volatile aroma terpenes by beta-lactoglobulin powders.
    Mironov NA; Breus VV; Gorbatchuk VV; Solomonov BN; Haertlé T
    J Agric Food Chem; 2003 Apr; 51(9):2665-73. PubMed ID: 12696955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.