BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12429354)

  • 1. Retinoic acid binding properties of the lipocalin member beta-lactoglobulin studied by circular dichroism, electronic absorption spectroscopy and molecular modeling methods.
    Zsila F; Bikádi Z; Simonyi M
    Biochem Pharmacol; 2002 Dec; 64(11):1651-60. PubMed ID: 12429354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of the pepper alkaloid piperine to bovine beta-lactoglobulin: circular dichroism spectroscopy and molecular modeling study.
    Zsila F; Hazai E; Sawyer L
    J Agric Food Chem; 2005 Dec; 53(26):10179-85. PubMed ID: 16366712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. trans-Parinaric acid as a versatile spectroscopic label to study ligand binding properties of bovine beta-lactoglobulin.
    Zsila F; Bikádi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):666-72. PubMed ID: 15893954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new ligand for an old lipocalin: induced circular dichroism spectra reveal binding of bilirubin to bovine beta-lactoglobulin.
    Zsila F
    FEBS Lett; 2003 Mar; 539(1-3):85-90. PubMed ID: 12650931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced chirality upon binding of cis-parinaric acid to bovine beta-lactoglobulin: spectroscopic characterization of the complex.
    Zsila F; Imre T; Szabó PT; Bikádi Z; Simonyi M
    FEBS Lett; 2002 Jun; 520(1-3):81-7. PubMed ID: 12044875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and mechanism of the Tanford transition of bovine beta-lactoglobulin studied using heteronuclear NMR spectroscopy.
    Sakurai K; Goto Y
    J Mol Biol; 2006 Feb; 356(2):483-96. PubMed ID: 16368109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locating the binding sites of retinol and retinoic acid with milk β-lactoglobulin.
    Belatik A; Kanakis CD; Hotchandani S; Tarantilis PA; Polissiou MG; Tajmir-Riahi HA
    J Biomol Struct Dyn; 2012; 30(4):437-47. PubMed ID: 22686570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational and structural analysis of bovine beta lactoglobulin-A upon interaction with Cr+3.
    Divsalar A; Saboury AA; Moosavi-Movahedi AA
    Protein J; 2006 Feb; 25(2):157-65. PubMed ID: 16862458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanism of the Tanford transition of bovine β-lactoglobulin through microsecond molecular dynamics simulations.
    Bello M
    J Biomol Struct Dyn; 2022 Apr; 40(7):3011-3023. PubMed ID: 33155532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovine beta-lactoglobulin: interaction studies with palmitic acid.
    Ragona L; Fogolari F; Zetta L; Pérez DM; Puyol P; De Kruif K; Löhr F; Rüterjans H; Molinari H
    Protein Sci; 2000 Jul; 9(7):1347-56. PubMed ID: 10933500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational variability of goat β-lactoglobulin: crystallographic and thermodynamic studies.
    Loch JI; Bonarek P; Polit A; Świątek S; Czub M; Ludwikowska M; Lewiński K
    Int J Biol Macromol; 2015 Jan; 72():1283-91. PubMed ID: 25450833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic and structural effects of the Tanford transition on ligand recognition of bovine β-lactoglobulin.
    Labra-Núñez A; Cofas-Vargas LF; Gutiérrez-Magdaleno G; Gómez-Velasco H; Rodríguez-Hernández A; Rodríguez-Romero A; García-Hernández E
    Arch Biochem Biophys; 2021 Mar; 699():108750. PubMed ID: 33421379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and experimental approaches for assessing the interactions between the model calycin beta-lactoglobulin and two antibacterial fluoroquinolones.
    Eberini I; Fantucci P; Rocco AG; Gianazza E; Galluccio L; Maggioni D; Ben ID; Galliano M; Mazzitello R; Gaiji N; Beringhelli T
    Proteins; 2006 Nov; 65(3):555-67. PubMed ID: 17001652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the conformational stability of the non-native alpha-helical intermediate of thiol-modified beta-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH.
    Chamani J
    J Colloid Interface Sci; 2006 Jul; 299(2):636-46. PubMed ID: 16554059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation and stability of thiol-modified bovine beta-lactoglobulin.
    Sakai K; Sakurai K; Sakai M; Hoshino M; Goto Y
    Protein Sci; 2000 Sep; 9(9):1719-29. PubMed ID: 11045618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of bovine beta-lactoglobulin (variant A) at very low ionic strength.
    Adams JJ; Anderson BF; Norris GE; Creamer LK; Jameson GB
    J Struct Biol; 2006 Jun; 154(3):246-54. PubMed ID: 16540345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy.
    Kuwajima K; Yamaya H; Sugai S
    J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-induced denaturation of monomer beta-lactoglobulin is partially irreversible: comparison of monomer form (highly acidic pH) with dimer form (neutral pH).
    Ikeuchi Y; Nakagawa K; Endo T; Suzuki A; Hayashi T; Ito T
    J Agric Food Chem; 2001 Aug; 49(8):4052-9. PubMed ID: 11513709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EF loop conformational change triggers ligand binding in beta-lactoglobulins.
    Ragona L; Fogolari F; Catalano M; Ugolini R; Zetta L; Molinari H
    J Biol Chem; 2003 Oct; 278(40):38840-6. PubMed ID: 12857741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of free Cys121 in stabilization of bovine beta-lactoglobulin B.
    Burova TV; Choiset Y; Tran V; Haertlé T
    Protein Eng; 1998 Nov; 11(11):1065-73. PubMed ID: 9876928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.