BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 12430157)

  • 21. A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits.
    Caro-Martín CR; Leal-Campanario R; Sánchez-Campusano R; Delgado-García JM; Gruart A
    J Neurosci; 2015 Nov; 35(44):14809-21. PubMed ID: 26538651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fear potentiated startle at short intervals following conditioned stimulus onset during delay but not trace conditioning.
    Asli O; Kulvedrøsten S; Solbakken LE; Flaten MA
    Psychophysiology; 2009 Jul; 46(4):880-8. PubMed ID: 19386051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prefrontal control of trace versus delay eyeblink conditioning: role of the unconditioned stimulus in rabbits (Oryctolagus cuniculus).
    Oswald B; Knuckley B; Mahan K; Sanders C; Powell DA
    Behav Neurosci; 2006 Oct; 120(5):1033-42. PubMed ID: 17014255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Associative and non-associative blinking in classically conditioned adult rats.
    Lindquist DH; Vogel RW; Steinmetz JE
    Physiol Behav; 2009 Mar; 96(3):399-411. PubMed ID: 19071146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combat veterans show normal discrimination during differential trace eyeblink conditioning, but increased responsivity to the conditioned and unconditioned stimulus.
    Burriss L; Ayers E; Powell DA
    J Psychiatr Res; 2007 Nov; 41(9):785-94. PubMed ID: 16716352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder.
    Chess AC; Green JT
    Behav Neurosci; 2008 Feb; 122(1):63-74. PubMed ID: 18298250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limited impairments of associative learning in a mouse model of accelerated senescence.
    Yang Y; Wu GY; Li X; Huang H; Hu B; Yao J; Wu B; Sui JF
    Behav Brain Res; 2013 Nov; 257():140-7. PubMed ID: 24076384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dose-dependent deficits in dual interstimulus interval classical eyeblink conditioning tasks following neonatal binge alcohol exposure in rats.
    Brown KL; Calizo LH; Stanton ME
    Alcohol Clin Exp Res; 2008 Feb; 32(2):277-93. PubMed ID: 18162069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerated trace eyeblink conditioning after cortisol IV-infusion.
    Kuehl LK; Lass-Hennemann J; Richter S; Blumenthal TD; Oitzl M; Schachinger H
    Neurobiol Learn Mem; 2010 Nov; 94(4):547-53. PubMed ID: 20850556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bilateral nature of the conditioned eyeblink response in the rabbit: behavioral characteristics and potential mechanisms.
    Lee T; Kim JJ; Wagner AR
    Behav Neurosci; 2008 Dec; 122(6):1306-17. PubMed ID: 19045950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Awareness is necessary for differential trace and delay eyeblink conditioning in humans.
    Lovibond PF; Liu JC; Weidemann G; Mitchell CJ
    Biol Psychol; 2011 Jul; 87(3):393-400. PubMed ID: 21586313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of hippocampal NMDA receptors in trace eyeblink conditioning.
    Sakamoto T; Takatsuki K; Kawahara S; Kirino Y; Niki H; Mishina M
    Brain Res; 2005 Mar; 1039(1-2):130-6. PubMed ID: 15781054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discriminative conditioning with different CS-US intervals produces temporally differentiated conditioned responses in the two eyes of the rabbit (Oryctolagus cuniculus).
    Lee T; Kim JJ; Wagner AR
    Behav Neurosci; 2009 Oct; 123(5):1085-94. PubMed ID: 19824775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hippocampal lesions in rats differentially affect long- and short-trace eyeblink conditioning.
    Walker AG; Steinmetz JE
    Physiol Behav; 2008 Feb; 93(3):570-8. PubMed ID: 18061635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS.
    Zuchowski ML; Timmann D; Gerwig M
    Brain Stimul; 2014; 7(4):525-31. PubMed ID: 24776785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.
    Kato Y; Takatsuki K; Kawahara S; Fukunaga S; Mori H; Mishina M; Kirino Y
    Neuroscience; 2005; 135(4):1017-23. PubMed ID: 16165299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural substrates of eyeblink conditioning: acquisition and retention.
    Christian KM; Thompson RF
    Learn Mem; 2003; 10(6):427-55. PubMed ID: 14657256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.
    Trivedi MA; Coover GD
    Behav Brain Res; 2006 Apr; 168(2):289-98. PubMed ID: 16413066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alteration of delay and trace eyeblink conditioning in fibromyalgia patients.
    Nees F; Rüddel H; Mussgay L; Kuehl LK; Römer S; Schächinger H
    Psychosom Med; 2010 May; 72(4):412-8. PubMed ID: 20190129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel acquisition of awareness and differential delay eyeblink conditioning.
    Weidemann G; Antees C
    Learn Mem; 2012 Apr; 19(5):201-10. PubMed ID: 22511242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.