BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12430724)

  • 1. The Claisen condensation in biology.
    Heath RJ; Rock CO
    Nat Prod Rep; 2002 Oct; 19(5):581-96. PubMed ID: 12430724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent evolution of the thiolase superfamily and chalcone synthase family.
    Jiang C; Kim SY; Suh DY
    Mol Phylogenet Evol; 2008 Dec; 49(3):691-701. PubMed ID: 18824113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme.
    Abbadi A; Brummel M; Schütt BS; Slabaugh MB; Schuch R; Spener F
    Biochem J; 2000 Jan; 345 Pt 1(Pt 1):153-60. PubMed ID: 10600651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid synthesis. Role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases.
    von Wettstein-Knowles P; Olsen JG; McGuire KA; Henriksen A
    FEBS J; 2006 Feb; 273(4):695-710. PubMed ID: 16441657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thiolase superfamily: condensing enzymes with diverse reaction specificities.
    Haapalainen AM; Meriläinen G; Wierenga RK
    Trends Biochem Sci; 2006 Jan; 31(1):64-71. PubMed ID: 16356722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of beta-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery.
    Olsen JG; Kadziola A; von Wettstein-Knowles P; Siggaard-Andersen M; Larsen S
    Structure; 2001 Mar; 9(3):233-43. PubMed ID: 11286890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of Xanthomonas campestris OleA reveal features that promote head-to-head condensation of two long-chain fatty acids.
    Goblirsch BR; Frias JA; Wackett LP; Wilmot CM
    Biochemistry; 2012 May; 51(20):4138-46. PubMed ID: 22524624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase.
    Christensen CE; Kragelund BB; von Wettstein-Knowles P; Henriksen A
    Protein Sci; 2007 Feb; 16(2):261-72. PubMed ID: 17242430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase.
    Jing F; Yandeau-Nelson MD; Nikolau BJ
    Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis.
    Jensen MR; Goblirsch BR; Christenson JK; Esler MA; Mohamed FA; Wackett LP; Wilmot CM
    Biochem J; 2017 Nov; 474(23):3871-3886. PubMed ID: 29025976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase.
    Tseng CC; McLoughlin SM; Kelleher NL; Walsh CT
    Biochemistry; 2004 Feb; 43(4):970-80. PubMed ID: 14744141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
    Jez JM; Ferrer JL; Bowman ME; Dixon RA; Noel JP
    Biochemistry; 2000 Feb; 39(5):890-902. PubMed ID: 10653632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 A resolution and its relationship to other condensing enzymes.
    Moche M; Dehesh K; Edwards P; Lindqvist Y
    J Mol Biol; 2001 Jan; 305(3):491-503. PubMed ID: 11152607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism for the condensation reaction of fatty-acid biosynthesis (author's transl)].
    Arnstadt KI; Schindlbeck G; Lynen F
    Eur J Biochem; 1975 Jul; 55(3):561-71. PubMed ID: 1100385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity.
    Florova G; Kazanina G; Reynolds KA
    Biochemistry; 2002 Aug; 41(33):10462-71. PubMed ID: 12173933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into bacterial resistance to cerulenin.
    Trajtenberg F; Altabe S; Larrieux N; Ficarra F; de Mendoza D; Buschiazzo A; Schujman GE
    FEBS J; 2014 May; 281(10):2324-38. PubMed ID: 24641521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.
    Modis Y; Wierenga RK
    J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine.
    Witkowski A; Joshi AK; Lindqvist Y; Smith S
    Biochemistry; 1999 Sep; 38(36):11643-50. PubMed ID: 10512619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways.
    Schröder J; Schröder G
    Z Naturforsch C J Biosci; 1990; 45(1-2):1-8. PubMed ID: 2184816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.