These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12430798)

  • 1. An inversion for Biot parameters in water-saturated sand.
    Chotiros NR
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1853-68. PubMed ID: 12430798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2008 Nov; 124(5):EL296-301. PubMed ID: 19045681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comments on "On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments" [J. Acoust. Soc. Am. 122, 1486-1501 (2007)].
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2010 Apr; 127(4):2095-8; discussion 2099-102. PubMed ID: 20369987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal incidence reflection loss from a sandy sediment.
    Chotiros NP; Lyons AP; Osler J; Pace NG
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1831-41. PubMed ID: 12430796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustics of marine sediment under compaction: binary grain-size model and viscoelastic extension of Biot's theory.
    Leurer KC; Brown C
    J Acoust Soc Am; 2008 Apr; 123(4):1941-51. PubMed ID: 18397002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of broadband models for sand sediments.
    Buchanan JL
    J Acoust Soc Am; 2006 Dec; 120(6):3584-98. PubMed ID: 17225388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximate expressions for viscous attenuation in marine sediments: relating Biot's "critical" and "peak" frequencies.
    Turgut A
    J Acoust Soc Am; 2000 Aug; 108(2):513-8. PubMed ID: 10955615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective density fluid model for acoustic propagation in sediments derived from Biot theory.
    Williams KL
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2276-81. PubMed ID: 11757917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2014 Jun; 135(6):3264-79. PubMed ID: 24907791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments.
    Turgut A; Yamamoto T
    J Acoust Soc Am; 2008 Sep; 124(3):EL122-7. PubMed ID: 19045553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validation and applications of a modified gap stiffness model for granular marine sediments.
    Kimura M
    J Acoust Soc Am; 2008 May; 123(5):2542-52. PubMed ID: 18529173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear acoustic waves in porous media in the context of Biot's theory.
    Donskoy DM; Khashanah K; McKee TG
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2521-8. PubMed ID: 11536846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the effects of roughness scattering on reflection loss measurements.
    Isakson MJ; Chotiros NP; Yarbrough RA; Piper JN
    J Acoust Soc Am; 2012 Dec; 132(6):3687-97. PubMed ID: 23231100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-data comparison of high frequency compressional wave attenuation in water-saturated granular medium with bimodal grain size distribution.
    Yang H; Seong W; Lee K
    Ultrasonics; 2018 Jan; 82():161-170. PubMed ID: 28843093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic wave propagation in gassy porous marine sediments: The rheological and the elastic effects.
    Dogan H; White PR; Leighton TG
    J Acoust Soc Am; 2017 Mar; 141(3):2277. PubMed ID: 28372087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting poro- and visco-elastic acoustic models of marine sediments: Salinity, force chains, creep, and permeability.
    Chotiros NP
    J Acoust Soc Am; 2024 Feb; 155(2):1005-1020. PubMed ID: 38341736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition term method for the analysis of the reflected and the transmitted acoustic signals from water-saturated porous plates.
    Belhocine F; Derible S; Franklin H
    J Acoust Soc Am; 2007 Sep; 122(3):1518. PubMed ID: 17927411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.