These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12430802)

  • 1. Sound propagation in concentrated emulsions: comparison of coupled phase model and core-shell model.
    Evans JM; Attenborough K
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1911-7. PubMed ID: 12430802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extended coupled phase theory for the sound propagation in polydisperse concentrated suspensions of rigid particles.
    Baudoin M; Thomas JL; Coulouvrat F; Lhuillier D
    J Acoust Soc Am; 2007 Jun; 121(6):3386-97. PubMed ID: 17552690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the influence of spatial correlations on sound propagation in concentrated solutions of rigid particles.
    Baudoin M; Thomas JL; Coulouvrat F
    J Acoust Soc Am; 2008 Jun; 123(6):4127-39. PubMed ID: 18537364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology of double emulsions.
    Pal R
    J Colloid Interface Sci; 2007 Mar; 307(2):509-15. PubMed ID: 17196608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions.
    Dukhin AS; Goetz PJ
    Adv Colloid Interface Sci; 2001 Sep; 92(1-3):73-132. PubMed ID: 11583299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions.
    Aggelis DG; Tsinopoulos SV; Polyzos D
    J Acoust Soc Am; 2004 Dec; 116(6):3443-52. PubMed ID: 15658695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS; Roy RA; Carey WM
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells.
    Marston PL
    J Acoust Soc Am; 2003 May; 113(5):2659-62. PubMed ID: 12765384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "Acoustic chaos in a duct with two separate sound sources" [J. Acoust. Soc. Am. 110, 120-126 (2001)].
    Castrejón-Pita AA; Castrejón-Pita JR; Huelsz G; Sarmiento-Galán A
    J Acoust Soc Am; 2008 Nov; 124(5):2702-5. PubMed ID: 19045755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple scattering from assemblies of dislocation walls in three dimensions. Application to propagation in polycrystals.
    Maurel A; Pagneux V; Barra F; Lund F
    J Acoust Soc Am; 2007 Jun; 121(6):3418-31. PubMed ID: 17552693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification of a two-sensor acoustic intensity measurement in lossy ducts.
    Biwa T; Tashiro Y; Nomura H; Ueda Y; Yazaki T
    J Acoust Soc Am; 2008 Sep; 124(3):1584-1590. PubMed ID: 19045650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of infauna, worm tubes, and shell hash on sediment acoustic variability and deviation from the viscous grain shearing model.
    Lee KM; Venegas GR; Ballard MS; Dorgan KM; Kiskaddon E; McNeese AR; Wilson PS
    J Acoust Soc Am; 2022 Oct; 152(4):2456. PubMed ID: 36319245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of low-frequency underwater sound using an array of air-filled balloons and comparison to effective medium theory.
    Lee KM; Wilson PS; Wochner MS
    J Acoust Soc Am; 2017 Dec; 142(6):3443. PubMed ID: 29289101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of sound propagation models used in bottom volume scattering studies.
    Li D; Tang D; Frisk GV
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2039-52. PubMed ID: 11108342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments.
    Turgut A; Yamamoto T
    J Acoust Soc Am; 2008 Sep; 124(3):EL122-7. PubMed ID: 19045553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "A theoretical framework for quantitatively characterizing sound field diffusion based on scattering coefficient and absorption coefficient of walls" [J. Acoust. Soc. Am. 128, 1140-1148 (2010)] (L).
    Omoto A
    J Acoust Soc Am; 2013 Jan; 133(1):9-12. PubMed ID: 23297877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of polydispersity on multipolar resonant scattering in emulsions.
    Mascaro B; Brunet T; Poncelet O; Aristégui C; Raffy S; Mondain-Monval O; Leng J
    J Acoust Soc Am; 2013 Apr; 133(4):1996-2003. PubMed ID: 23556570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "Resonant acoustic scattering by swimbladder-bearing fish" [J. Acoust. Soc. Am. 64, 571-580 (1978)] (L).
    Baik K
    J Acoust Soc Am; 2013 Jan; 133(1):5-8. PubMed ID: 23297876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic wave propagation in gassy porous marine sediments: The rheological and the elastic effects.
    Dogan H; White PR; Leighton TG
    J Acoust Soc Am; 2017 Mar; 141(3):2277. PubMed ID: 28372087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.