These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12430825)

  • 1. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds.
    Zhang C; Zhao W; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2147-54. PubMed ID: 12430826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound generation by steady flow through glottis-shaped orifices.
    Zhang Z; Mongeau L; Frankel SH; Thomson S; Park JB
    J Acoust Soc Am; 2004 Sep; 116(3):1720-8. PubMed ID: 15478439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the application of the lattice Boltzmann method to the investigation of glottal flow.
    Kucinschi BR; Afjeh AA; Scherer RC
    J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of one-dimensional and three-dimensional glottal flow models in left-right asymmetric vocal fold conditions.
    Yoshinaga T; Zhang Z; Iida A
    J Acoust Soc Am; 2022 Nov; 152(5):2557. PubMed ID: 36456298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamic transfer of energy to the vocal folds.
    Thomson SL; Mongeau L; Frankel SH
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1689-700. PubMed ID: 16240827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aeroacoustics of T-junction merging flow.
    Lam GC; Leung RC; Tang SK
    J Acoust Soc Am; 2013 Feb; 133(2):697-708. PubMed ID: 23363089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds.
    Ikeda T; Matsuzaki Y; Aomatsu T
    J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W; Brücker C
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH; Wei T
    J Acoust Soc Am; 2006 Sep; 120(3):1578-88. PubMed ID: 17004480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.