BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 12430903)

  • 1. Cytogenetic and FISH studies in myelodysplasia, acute myeloid leukemia, chronic lymphocytic leukemia and lymphoma.
    Dewald GW
    Int J Hematol; 2002 Aug; 76 Suppl 2():65-74. PubMed ID: 12430903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis and monitoring of chromosome aberrations in hematological malignancies by fluorescence in situ hybridization.
    Döhner H; Stilgenbauer S; Fischer K; Schröder M; Bentz M; Lichter P
    Stem Cells; 1995 Dec; 13 Suppl 3():76-82. PubMed ID: 8747992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Fluorescence In Situ Hybridization Technology in Malignancies.
    Tansatit M
    Methods Mol Biol; 2017; 1541():75-90. PubMed ID: 27910016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Detection of abnormal numbers of chromosome 8 with interphase fluorescence in situ hybridization in hematologic malignancies].
    Wang HP; Li GX; Qiao ZH; Wang HW
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2004 Aug; 21(4):395-7. PubMed ID: 15300644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytogenetics in the genomic era.
    Granada I; Palomo L; Ruiz-Xivillé N; Mallo M; Solé F
    Best Pract Res Clin Haematol; 2020 Sep; 33(3):101196. PubMed ID: 33038985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence in situ hybridization: a highly efficient technique of molecular diagnosis and predication for disease course in patients with myeloid leukemias.
    Amare PS; Baisane C; Saikia T; Nair R; Gawade H; Advani S
    Cancer Genet Cytogenet; 2001 Dec; 131(2):125-34. PubMed ID: 11750052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of minimal residual disease using fluorescence DNA in situ hybridization: a follow-up study in leukemia and lymphoma patients.
    Nylund SJ; Ruutu T; Saarinen U; Larramendy ML; Knuutila S
    Leukemia; 1994 Apr; 8(4):587-94. PubMed ID: 8152255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cytogenetic abnormalities in patients with concurrent chronic lymphocytic leukemia and multiple myeloma shown by interphase fluorescence in situ hybridization: evidence of distinct clonal origin.
    Chang H; Wechalekar A; Li L; Reece D
    Cancer Genet Cytogenet; 2004 Jan; 148(1):44-8. PubMed ID: 14697640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes.
    Döhner H; Stilgenbauer S; Fischer K; Bentz M; Lichter P
    Leukemia; 1997 Apr; 11 Suppl 2():S19-24. PubMed ID: 9178833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent Cytogenetic Abnormalities in Non-Hodgkin's Lymphoma and Chronic Lymphocytic Leukemia.
    Ma ES
    Methods Mol Biol; 2017; 1541():279-293. PubMed ID: 27910030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma.
    Aoun P; Blair HE; Smith LM; Dave BJ; Lynch J; Weisenburger DD; Pavletic SZ; Sanger WG
    Leuk Lymphoma; 2004 Aug; 45(8):1595-603. PubMed ID: 15370211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined cytogenetic testing and fluorescence in situ hybridization analysis in the study of chronic lymphocytic leukemia and multiple myeloma.
    Wiktor A; Van Dyke DL
    Cancer Genet Cytogenet; 2004 Aug; 153(1):73-6. PubMed ID: 15325099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetic and fluorescence in situ hybridization analyses of hematologic malignancies in Korea.
    Koo SH; Kwon GC; Chun HJ; Park JW
    Cancer Genet Cytogenet; 1998 Feb; 101(1):1-6. PubMed ID: 9460492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cytogenetic analysis of B-cell chronic lymphocytic leukemia.
    Stilgenbauer S; Döhner K; Bentz M; Lichter P; Döhner H
    Ann Hematol; 1998; 76(3-4):101-10. PubMed ID: 9619726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast-FISH detection and semi-automated image analysis of numerical chromosome aberrations in hematological malignancies.
    Esa A; Trakhtenbrot L; Hausmann M; Rauch J; Brok-Simoni F; Rechavi G; Ben-Bassat I; Cremer C
    Anal Cell Pathol; 1998; 16(4):211-22. PubMed ID: 9762368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Common Abnormalities Seen in Chronic Lymphocytic Leukemia Using Fluorescence In Situ Hybridization.
    Meyer RG; Van Dyke DL
    Methods Mol Biol; 2019; 1881():35-49. PubMed ID: 30350196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of chromosomal abnormalities in chronic lymphocytic leukemia increased by interphase fluorescence in situ hybridization in tetradecanoylphorbol acetate-stimulated peripheral blood cells.
    Sánchez J; Aventín A
    Cancer Genet Cytogenet; 2007 May; 175(1):57-60. PubMed ID: 17498559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FISH panels for hematologic malignancies.
    Sreekantaiah C
    Cytogenet Genome Res; 2007; 118(2-4):284-96. PubMed ID: 18000382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The parallel application of karyotype interphase and metaphase FISH after DSP-30/IL-2 stimulation is necessary for the investigation of chronic lymphocytic leukemia.
    Karakosta M; Manola KN
    Hematology; 2016 Oct; 21(9):526-35. PubMed ID: 27077766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interphase Molecular Cytogenetic Detection Rates of Chronic Lymphocytic Leukemia-Specific Aberrations Are Higher in Cultivated Cells Than in Blood or Bone Marrow Smears.
    Alhourani E; Aroutiounian R; Harutyunyan T; Glaser A; Schlie C; Pohle B; Liehr T
    J Histochem Cytochem; 2016 Aug; 64(8):495-501. PubMed ID: 27315825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.