BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12431837)

  • 1. Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells.
    Eidne KA; Kroeger KM; Hanyaloglu AC
    Trends Endocrinol Metab; 2002 Dec; 13(10):415-21. PubMed ID: 12431837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques.
    Hébert TE; Galés C; Rebois RV
    Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs.
    Dacres H; Wang J; Dumancic MM; Trowell SC
    Anal Chem; 2010 Jan; 82(1):432-5. PubMed ID: 19957970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors.
    Milligan G
    Eur J Pharm Sci; 2004 Mar; 21(4):397-405. PubMed ID: 14998570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization.
    Gandía J; Lluís C; Ferré S; Franco R; Ciruela F
    Bioessays; 2008 Jan; 30(1):82-9. PubMed ID: 18081019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of resonance energy transfer in high-throughput screening: BRET versus FRET.
    Boute N; Jockers R; Issad T
    Trends Pharmacol Sci; 2002 Aug; 23(8):351-4. PubMed ID: 12377570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The BRET technology and its application to screening assays.
    Bacart J; Corbel C; Jockers R; Bach S; Couturier C
    Biotechnol J; 2008 Mar; 3(3):311-24. PubMed ID: 18228541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences.
    Ramsay D; Kellett E; McVey M; Rees S; Milligan G
    Biochem J; 2002 Jul; 365(Pt 2):429-40. PubMed ID: 11971762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.
    Lohse MJ; Nuber S; Hoffmann C
    Pharmacol Rev; 2012 Apr; 64(2):299-336. PubMed ID: 22407612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and high resolution single-cell BRET imaging.
    Goyet E; Bouquier N; Ollendorff V; Perroy J
    Sci Rep; 2016 Jun; 6():28231. PubMed ID: 27302735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Resonance Energy Transfer Techniques for In Vivo Detection of Chemokine Receptor Oligomerization.
    Martínez-Muñoz L; Rodríguez-Frade JM; Mellado M
    Methods Mol Biol; 2016; 1407():341-59. PubMed ID: 27271913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors.
    Alvarez-Curto E; Pediani JD; Milligan G
    Anal Bioanal Chem; 2010 Sep; 398(1):167-80. PubMed ID: 20517598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
    James JR; Oliveira MI; Carmo AM; Iaboni A; Davis SJ
    Nat Methods; 2006 Dec; 3(12):1001-6. PubMed ID: 17086179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioluminescence resonance energy transfer: an emerging tool for the detection of protein-protein interaction in living cells.
    Gersting SW; Lotz-Havla AS; Muntau AC
    Methods Mol Biol; 2012; 815():253-63. PubMed ID: 22130997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time monitoring of receptor and G-protein interactions in living cells.
    Galés C; Rebois RV; Hogue M; Trieu P; Breit A; Hébert TE; Bouvier M
    Nat Methods; 2005 Mar; 2(3):177-84. PubMed ID: 15782186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of resonance energy transfer methods for Alzheimer related protein-protein interactions in living cells.
    Kim J; Lee J; Kwon D; Lee H; Grailhe R
    Mol Biosyst; 2011 Nov; 7(11):2991-6. PubMed ID: 21909576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of heteromerization of more than two proteins by sequential BRET-FRET.
    Carriba P; Navarro G; Ciruela F; Ferré S; Casadó V; Agnati L; Cortés A; Mallol J; Fuxe K; Canela EI; Lluís C; Franco R
    Nat Methods; 2008 Aug; 5(8):727-33. PubMed ID: 18587404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues.
    Xu X; Soutto M; Xie Q; Servick S; Subramanian C; von Arnim AG; Johnson CH
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10264-9. PubMed ID: 17551013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET).
    Hamdan FF; Percherancier Y; Breton B; Bouvier M
    Curr Protoc Neurosci; 2006 Feb; Chapter 5():Unit 5.23. PubMed ID: 18428639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The new era of bioluminescence resonance energy transfer technology.
    De A
    Curr Pharm Biotechnol; 2011 Apr; 12(4):558-68. PubMed ID: 21342101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.