These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 12432028)
1. Elevated pCO(2 )favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots. Kruse J; Hetzger I; Hänsch R; Mendel RR; Walch-Liu P; Engels C; Rennenberg H J Exp Bot; 2002 Dec; 53(379):2351-67. PubMed ID: 12432028 [TBL] [Abstract][Full Text] [Related]
2. Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Kruse J; Kopriva S; Hänsch R; Krauss GJ; Mendel RR; Rennenberg H Plant Biol (Stuttg); 2007 Sep; 9(5):638-46. PubMed ID: 17853363 [TBL] [Abstract][Full Text] [Related]
3. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Matt P; Schurr U; Klein D; Krapp A; Stitt M Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717 [TBL] [Abstract][Full Text] [Related]
4. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation. Hänsch R; Fessel DG; Witt C; Hesberg C; Hoffmann G; Walch-Liu P; Engels C; Kruse J; Rennenberg H; Kaiser WM; Mendel RR J Exp Bot; 2001 Jun; 52(359):1251-8. PubMed ID: 11432943 [TBL] [Abstract][Full Text] [Related]
5. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Scheible WR; González-Fontes A; Morcuende R; Lauerer M; Geiger M; Glaab J; Gojon A; Schulze ED; Stitt M Planta; 1997; 203(3):304-19. PubMed ID: 9431679 [TBL] [Abstract][Full Text] [Related]
6. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Bauer GA; Berntson GM Tree Physiol; 2001 Feb; 21(2-3):137-44. PubMed ID: 11303644 [TBL] [Abstract][Full Text] [Related]
7. Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Camacho-Cristóbal JJ; González-Fontes A Planta; 2007 Jul; 226(2):443-51. PubMed ID: 17334782 [TBL] [Abstract][Full Text] [Related]
8. The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants. Santos-Filho PR; Saviani EE; Salgado I; Oliveira HC Amino Acids; 2014 Apr; 46(4):1121-9. PubMed ID: 24468931 [TBL] [Abstract][Full Text] [Related]
9. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Tang Z; Fan X; Li Q; Feng H; Miller AJ; Shen Q; Xu G Plant Physiol; 2012 Dec; 160(4):2052-63. PubMed ID: 23093362 [TBL] [Abstract][Full Text] [Related]
10. The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. Scheurwater I; Koren M; Lambers H; Atkin OK J Exp Bot; 2002 Jul; 53(374):1635-42. PubMed ID: 12096102 [TBL] [Abstract][Full Text] [Related]
11. Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence. Lea US; Leydecker MT; Quilleré I; Meyer C; Lillo C Plant Physiol; 2006 Mar; 140(3):1085-94. PubMed ID: 16461378 [TBL] [Abstract][Full Text] [Related]
12. Steps towards an integrated view of nitrogen metabolism. Stitt M; Müller C; Matt P; Gibon Y; Carillo P; Morcuende R; Scheible WR; Krapp A J Exp Bot; 2002 Apr; 53(370):959-70. PubMed ID: 11912238 [TBL] [Abstract][Full Text] [Related]
13. Nitrate concentration effects on NO3-N uptake and reduction, growth, and fruit yield in strawberry. Darnell RL; Stutte GW J Am Soc Hortic Sci; 2001 Sep; 126(5):560-3. PubMed ID: 12033227 [TBL] [Abstract][Full Text] [Related]
14. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Matt P; Krapp A; Haake V; Mock HP; Stitt M Plant J; 2002 Jun; 30(6):663-77. PubMed ID: 12061898 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. Alt DS; Doyle JW; Malladi A J Plant Physiol; 2017 Sep; 216():79-87. PubMed ID: 28578080 [TBL] [Abstract][Full Text] [Related]
16. Diurnal changes in nitrogen assimilation of tobacco roots. Stöhr C; Mäck G J Exp Bot; 2001 Jun; 52(359):1283-9. PubMed ID: 11432947 [TBL] [Abstract][Full Text] [Related]
17. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning. Viktor A; Cramer MD New Phytol; 2005 Jan; 165(1):157-69. PubMed ID: 15720630 [TBL] [Abstract][Full Text] [Related]
18. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Lea US; Ten Hoopen F; Provan F; Kaiser WM; Meyer C; Lillo C Planta; 2004 May; 219(1):59-65. PubMed ID: 14767769 [TBL] [Abstract][Full Text] [Related]