These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12432180)

  • 21. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals?
    Dawson TJ; Mifsud B; Raad MC; Webster KN
    J Exp Biol; 2004 Jul; 207(Pt 16):2811-21. PubMed ID: 15235010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological implications of altitude training for endurance performance at sea level: a review.
    Bailey DM; Davies B
    Br J Sports Med; 1997 Sep; 31(3):183-90. PubMed ID: 9298550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training.
    Suter E; Hoppeler H; Claassen H; Billeter R; Aebi U; Horber F; Jaeger P; Marti B
    Int J Sports Med; 1995 Apr; 16(3):160-6. PubMed ID: 7649706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What maintains energy supply at peak aerobic exercise in trained and untrained older men?
    Sagiv M; Goldhammer E; Ben-Sira D; Amir R
    Gerontology; 2007; 53(6):357-61. PubMed ID: 17622751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comment on point: counterpoint "in health and in a normoxic environment, VO2 max is/is not limited primarily by cardiac output and locomotor muscle blood flow". Vol 100: 744-8, 2006. Discrete, well-developed components may be able to compensate for weaker ones.
    Schumacher YO; Roecker K
    J Appl Physiol (1985); 2006 Mar; 100(3):1086-7. PubMed ID: 16538719
    [No Abstract]   [Full Text] [Related]  

  • 26. Skeletal muscle mass and the reduction of VO2max in trained older subjects.
    Proctor DN; Joyner MJ
    J Appl Physiol (1985); 1997 May; 82(5):1411-5. PubMed ID: 9134886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limiting factors for maximum oxygen uptake and determinants of endurance performance.
    Bassett DR; Howley ET
    Med Sci Sports Exerc; 2000 Jan; 32(1):70-84. PubMed ID: 10647532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise, ageing and the lung.
    Roman MA; Rossiter HB; Casaburi R
    Eur Respir J; 2016 Nov; 48(5):1471-1486. PubMed ID: 27799391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle structural capacity for oxygen flux from capillary to fiber mitochondria.
    Mathieu-Costello O; Hepple RT
    Exerc Sport Sci Rev; 2002 Apr; 30(2):80-4. PubMed ID: 11991542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "In health and in a normoxic environment, VO2 max is/is not limited primarily by cardiac output and locomotor muscle blood flow".
    Hoppeler H; Lindstedt SL
    J Appl Physiol (1985); 2006 Apr; 100(4):1415-6. PubMed ID: 16646132
    [No Abstract]   [Full Text] [Related]  

  • 31. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans.
    González-Alonso J; Calbet JA
    Circulation; 2003 Feb; 107(6):824-30. PubMed ID: 12591751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise efficiency is reduced by mitochondrial uncoupling in the elderly.
    Conley KE; Jubrias SA; Cress ME; Esselman P
    Exp Physiol; 2013 Mar; 98(3):768-77. PubMed ID: 23085769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
    Boushel R; Ara I; Gnaiger E; Helge JW; González-Alonso J; Munck-Andersen T; Sondergaard H; Damsgaard R; van Hall G; Saltin B; Calbet JA
    Acta Physiol (Oxf); 2014 May; 211(1):122-34. PubMed ID: 24528535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peripheral adaptations to low blood flow in muscle during exercise.
    Terjung RL; Mathien GM; Erney TP; Ogilvie RW
    Am J Cardiol; 1988 Sep; 62(8):15E-19E. PubMed ID: 3414533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soothing the sleeping giant: improving skeletal muscle oxygen kinetics and exercise intolerance in HFpEF.
    Sarma S; Levine BD
    J Appl Physiol (1985); 2015 Sep; 119(6):734-8. PubMed ID: 26048977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training.
    Raleigh JP; Giles MD; Islam H; Nelms M; Bentley RF; Jones JH; Neder JA; Boonstra K; Quadrilatero J; Simpson CA; Tschakovsky ME; Gurd BJ
    Appl Physiol Nutr Metab; 2018 Oct; 43(10):1059-1068. PubMed ID: 29733694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of endurance and resistance exercise on muscle capillarization in the elderly: a review.
    Harris BA
    Acta Physiol Scand; 2005 Oct; 185(2):89-97. PubMed ID: 16168003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aging skeletal muscle: response to exercise.
    Cartee GD
    Exerc Sport Sci Rev; 1994; 22():91-120. PubMed ID: 7925554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new model of short acceleration-based training improves exercise performance in old mice.
    Niel R; Ayachi M; Mille-Hamard L; Le Moyec L; Savarin P; Clement MJ; Besse S; Launay T; Billat VL; Momken I
    Scand J Med Sci Sports; 2017 Dec; 27(12):1576-1587. PubMed ID: 28000342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function.
    Betik AC; Baker DJ; Krause DJ; McConkey MJ; Hepple RT
    Exp Physiol; 2008 Jul; 93(7):863-71. PubMed ID: 18356556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.