BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12432243)

  • 1. CDK9: from basal transcription to cancer and AIDS.
    De Falco G; Giordano A
    Cancer Biol Ther; 2002; 1(4):342-7. PubMed ID: 12432243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.
    Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A
    J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription.
    Zhou M; Nekhai S; Bharucha DC; Kumar A; Ge H; Price DH; Egly JM; Brady JN
    J Biol Chem; 2001 Nov; 276(48):44633-40. PubMed ID: 11572868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription.
    O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q
    J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
    Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T
    J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation.
    Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J
    Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation.
    Isel C; Karn J
    J Mol Biol; 1999 Jul; 290(5):929-41. PubMed ID: 10438593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a cyclin subunit required for the function of Drosophila P-TEFb.
    Peng J; Marshall NF; Price DH
    J Biol Chem; 1998 May; 273(22):13855-60. PubMed ID: 9593731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription.
    Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN
    Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase.
    Chen D; Zhou Q
    Mol Cell Biol; 1999 Apr; 19(4):2863-71. PubMed ID: 10082552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter.
    Fong YW; Zhou Q
    Mol Cell Biol; 2000 Aug; 20(16):5897-907. PubMed ID: 10913173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription.
    Chen D; Fong Y; Zhou Q
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2728-33. PubMed ID: 10077579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines.
    Herrmann CH; Carroll RG; Wei P; Jones KA; Rice AP
    J Virol; 1998 Dec; 72(12):9881-8. PubMed ID: 9811724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation.
    Ivanov D; Kwak YT; Nee E; Guo J; García-Martínez LF; Gaynor RB
    J Mol Biol; 1999 Apr; 288(1):41-56. PubMed ID: 10329125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages.
    Rice AP; Herrmann CH
    Curr HIV Res; 2003 Oct; 1(4):395-404. PubMed ID: 15049426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CDK9-associated cyclins T1 and T2 exert opposite effects on HIV-1 Tat activity.
    Napolitano G; Licciardo P; Gallo P; Majello B; Giordano A; Lania L
    AIDS; 1999 Aug; 13(12):1453-9. PubMed ID: 10465067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient induction of cyclin T1 during human macrophage differentiation regulates human immunodeficiency virus type 1 Tat transactivation function.
    Liou LY; Herrmann CH; Rice AP
    J Virol; 2002 Nov; 76(21):10579-87. PubMed ID: 12368300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDK9 (PITALRE): a multifunctional cdc2-related kinase.
    de Falco G; Giordano A
    J Cell Physiol; 1998 Dec; 177(4):501-6. PubMed ID: 10092203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1).
    Chiu YL; Cao H; Jacque JM; Stevenson M; Rana TM
    J Virol; 2004 Mar; 78(5):2517-29. PubMed ID: 14963154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat.
    Fujinaga K; Cujec TP; Peng J; Garriga J; Price DH; Graña X; Peterlin BM
    J Virol; 1998 Sep; 72(9):7154-9. PubMed ID: 9696809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.