These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 12432395)

  • 21. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions.
    Edwards JS; Palsson BO
    BMC Bioinformatics; 2000; 1():1. PubMed ID: 11001586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli.
    Liu M; Durfee T; Cabrera JE; Zhao K; Jin DJ; Blattner FR
    J Biol Chem; 2005 Apr; 280(16):15921-7. PubMed ID: 15705577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states.
    Barrett CL; Herring CD; Reed JL; Palsson BO
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19103-8. PubMed ID: 16357206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process development of succinic acid production by Escherichia coli NZN111 using acetate as an aerobic carbon source.
    Liu Y; Wu H; Li Q; Tang X; Li Z; Ye Q
    Enzyme Microb Technol; 2011 Oct; 49(5):459-64. PubMed ID: 22112618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of Escherichia coli metabolic phenotypes within the context of phenotypic phase planes.
    Ibarra RU; Fu P; Palsson BO; DiTonno JR; Edwards JS
    J Mol Microbiol Biotechnol; 2003; 6(2):101-8. PubMed ID: 15044828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation.
    Lee SJ; Lee DY; Kim TY; Kim BH; Lee J; Lee SY
    Appl Environ Microbiol; 2005 Dec; 71(12):7880-7. PubMed ID: 16332763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scalable method to determine mutations that occur during adaptive evolution of Escherichia coli.
    Raghunathan A; Palsson BO
    Biotechnol Lett; 2003 Mar; 25(5):435-41. PubMed ID: 12882568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of genome-scale metabolic network models using experimentally measured flux profiles.
    Herrgård MJ; Fong SS; Palsson BØ
    PLoS Comput Biol; 2006 Jul; 2(7):e72. PubMed ID: 16839195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multidimensional optimality of microbial metabolism.
    Schuetz R; Zamboni N; Zampieri M; Heinemann M; Sauer U
    Science; 2012 May; 336(6081):601-4. PubMed ID: 22556256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source.
    Lee PC; Lee WG; Lee SY; Chang HN
    Biotechnol Bioeng; 2001 Jan; 72(1):41-8. PubMed ID: 11084592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli.
    Sridhara V; Meyer AG; Rai P; Barrick JE; Ravikumar P; Segrè D; Wilke CO
    PLoS One; 2014; 9(12):e114608. PubMed ID: 25502413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale.
    Herring CD; Raghunathan A; Honisch C; Patel T; Applebee MK; Joyce AR; Albert TJ; Blattner FR; van den Boom D; Cantor CR; Palsson BØ
    Nat Genet; 2006 Dec; 38(12):1406-12. PubMed ID: 17086184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol.
    Cheng KK; Lee BS; Masuda T; Ito T; Ikeda K; Hirayama A; Deng L; Dong J; Shimizu K; Soga T; Tomita M; Palsson BO; Robert M
    Nat Commun; 2014; 5():3233. PubMed ID: 24481126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural computation meta-heuristics for the in silico optimization of microbial strains.
    Rocha M; Maia P; Mendes R; Pinto JP; Ferreira EC; Nielsen J; Patil KR; Rocha I
    BMC Bioinformatics; 2008 Nov; 9():499. PubMed ID: 19038030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states.
    Fong SS; Joyce AR; Palsson BØ
    Genome Res; 2005 Oct; 15(10):1365-72. PubMed ID: 16204189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR).
    Reed JL; Vo TD; Schilling CH; Palsson BO
    Genome Biol; 2003; 4(9):R54. PubMed ID: 12952533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.
    Hua Q; Joyce AR; Fong SS; Palsson BØ
    Biotechnol Bioeng; 2006 Dec; 95(5):992-1002. PubMed ID: 16807925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation.
    Teusink B; Wiersma A; Jacobs L; Notebaart RA; Smid EJ
    PLoS Comput Biol; 2009 Jun; 5(6):e1000410. PubMed ID: 19521528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating high-throughput and computational data elucidates bacterial networks.
    Covert MW; Knight EM; Reed JL; Herrgard MJ; Palsson BO
    Nature; 2004 May; 429(6987):92-6. PubMed ID: 15129285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification.
    Rocabert C; Knibbe C; Consuegra J; Schneider D; Beslon G
    PLoS Comput Biol; 2017 Mar; 13(3):e1005459. PubMed ID: 28358919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.